skip to main content

Title: R &D of wavelength-shifting reflectors and characterization of the quantum efficiency of tetraphenyl butadiene and polyethylene naphthalate in liquid argon
Abstract Detectors based on liquid argon (LAr) often require surfaces that can shift vacuum ultraviolet (VUV) light and reflect the visible shifted light. For the LAr instrumentation of the LEGEND-200 neutrinoless double beta decay experiment, several square meters of wavelength-shifting reflectors (WLSR) were prepared: the reflector Tetratex® (TTX) was in-situ evaporated with the wavelength shifter tetraphenyl butadiene (TPB). For even larger detectors, TPB evaporation will be more challenging and plastic films of polyethylene naphthalate (PEN) are considered as an option to ease scalability. In this work, we first characterized the absorption (and reflectivity) of PEN, TPB (and TTX) films in response to visible light. We then measured TPB and PEN coupled to TTX in a LAr setup equipped with a VUV sensitive photomultiplier tube. The effective VUV photon yield in the setup was first measured using an absorbing reference sample, and the VUV reflectivity of TTX quantified. The characterization and simulation of the setup along with the measurements and modelling of the optical parameters of TPB, PEN and TTX allowed to estimate the absolute quantum efficiency (QE) of TPB and PEN in LAr (at 87K) for the first time: these were found to be above 67 and 49%, respectively (at 90% CL). These results provide relevant input for the optical simulations of experiments that use TPB in LAr, such as LEGEND-200, and for experiments that plan to use TPB or PEN to shift VUV scintillation light.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
The European Physical Journal C
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Poly Ethylene Naphthalate (PEN) is an industrial polymer plastic which is investigated as a low background, transparent, scintillating and wavelength shifting structural material. PEN scintillates in the blue region and has excellent mechanical properties both at room and cryogenic temperatures. Thus, it is an ideal candidate for active structural components in experiments for the search of rare events like neutrinoless double-beta decay or dark matter recoils. Such optically active structures improve the identification and rejection efficiency of backgrounds events, like this improving the sensitivity of experiments. This paper reports on the production of radiopure and transparent PEN plates These structures can be used to mount germanium detectors operating in cryogenic liquids (LAr, LN). Thus, as first application PEN holders will be used to mount the Ge detectors in the Legend -200 experiment. The whole process from cleaning the raw material to testing the PEN active components under final operational conditions is reported. 
    more » « less
  2. Abstract Polyethylene Naphthalate (PEN) plastic scintillator has been identified as potential self-vetoing structural material in low-background physics experiments. Radio-pure scintillating components have been produced from PEN using injection compression molding technology. These low-background PEN components will be used as optically active holders to mount the Germanium detectors in the Legend -200 neutrinoless double beta decay experiment. In this paper, we present the measurement of the optical properties of these PEN components. The scintillation light emission spectrum, time constant, attenuation and bulk absorption length as well as light output and light yield are reported. In addition, the surface of these PEN components has been characterized and an estimation of the surface roughness is presented. The light output of the final Legend -200 detector holders has been measured and is reported. These measurements were used to estimate the self-vetoing efficiency of these holders. 
    more » « less
  3. Abstract DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6  $$\times $$ ×  6  $$\times $$ ×  6 m $$^3$$ 3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019–2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties. 
    more » « less
  4. Abstract A large number of particle detectors employ liquid argon as their target material owing to its high scintillation yield and its ability to drift ionization charge over large distances. Scintillation light from argon is peaked at 128 nm and a wavelength shifter is required for its efficient detection. In this work, we directly compare the light yield achieved in two identical liquid argon chambers, one of which is equipped with polyethylene naphthalate (PEN) and the other with tetraphenyl butadiene (TPB) wavelength shifter. Both chambers are lined with enhanced specular reflectors and instrumented with SiPMs with a coverage fraction of approximately 1%, which represents a geometry comparable to the future large scale detectors. We measured the light yield of the PEN chamber to be  39.4 $$\,\pm \,$$ ± 0.4(stat) $$\,\pm \,$$ ± 1.9(syst)% of the yield of the TPB chamber. Using a Monte Carlo simulation this result is used to extract the wavelength shifting efficiency of PEN relative to TPB equal to 47.2 $$\,\pm \,$$ ± 5.7%. This result paves the way for the use of easily available PEN foils as a wavelength shifter, which can substantially simplify the construction of future liquid argon detectors. 
    more » « less
  5. Abstract Liquid argon (LAr) is a common choice as detection medium in particle physics and rare-event searches. Challenges of LAr scintillation light detection include its short emission wavelength, long scintillation time and short attenuation length. The addition of small amounts of xenon to LAr is known to improve the scintillation and optical properties. We present a characterization campaign on xenon-doped liquid argon (XeDLAr) with target xenon concentrations ranging from 0 to 300 ppm by mass encompassing the measurement of the photoelectron yield Y , effective triplet lifetime τ 3 and effective attenuation length λ att . The measurements were conducted in the Subterranean Cryogenic ARgon Facility, Scarf , a 1 t (XeD)LAr test stand in the shallow underground laboratory (UGL) of TU-Munich. These three scintillation and optical parameters were observed simultaneously with a single setup, the Legend Liquid Argon Monitoring Apparatus, Llama . The actual xenon concentrations in the liquid and gaseous phases were determined with the Impurity DEtector For Investigation of Xenon, Idefix , a mass spectrometer setup, and successful doping was confirmed. At the highest dopant concentration we find a doubling of Y , a tenfold reduction of τ 3 to ∼90 ns and a tenfold increase of λ att to over 6 m. 
    more » « less