This study investigates the presence of dynamical patterns of interpersonal coordination in extended deceptive conversations across multimodal channels of behavior. Using a novel "devil’s advocate" paradigm, we experimentally elicited deception and truth across topics in which conversational partners either agreed or disagreed, and where one partner was surreptitiously asked to argue an opinion opposite of what he or she really believed. We focus on interpersonal coordination as an emergent behavioral signal that captures interdependencies between conversational partners, both as the coupling of head movements over the span of milliseconds, measured via a windowed lagged cross correlation (WLCC) technique, and more global temporal dependencies across speech rate, using cross recurrence quantification analysis (CRQA). Moreover, we considered how interpersonal coordination might be shaped by strategic, adaptive conversational goals associated with deception. We found that deceptive conversations displayed more structured speech rate and higher head movement coordination, the latter with a peak in deceptive disagreement conversations. Together the results allow us to posit an adaptive account, whereby interpersonal coordination is not beholden to any single functional explanation, but can strategically adapt to diverse conversational demands.
more »
« less
A framework for understanding post-detection deception in predator–prey interactions
Predators and prey exist in persistent conflict that often hinges on deception—the transmission of misleading or manipulative signals—as a means for survival. Deceptive traits are widespread across taxa and sensory systems, representing an evolutionarily successful and common strategy. Moreover, the highly conserved nature of the major sensory systems often extends these traits past single species predator–prey interactions toward a broader set of perceivers. As such, deceptive traits can provide a unique window into the capabilities, constraints and commonalities across divergent and phylogenetically-related perceivers. Researchers have studied deceptive traits for centuries, but a unified framework for categorizing different types of post-detection deception in predator–prey conflict still holds potential to inform future research. We suggest that deceptive traits can be distinguished by their effect on object formation processes. Perceptual objects are composed of physical attributes (what) and spatial (where) information. Deceptive traits that operate after object formation can therefore influence the perception and processing of either or both of these axes. We build upon previous work using a perceiver perspective approach to delineate deceptive traits by whether they closely match the sensory information of another object or create a discrepancy between perception and reality by exploiting the sensory shortcuts and perceptual biases of their perceiver. We then further divide this second category, sensory illusions, into traits that distort object characteristics along either the what or where axes, and those that create the perception of whole novel objects, integrating the what/where axes. Using predator–prey examples, we detail each step in this framework and propose future avenues for research. We suggest that this framework will help organize the many forms of deceptive traits and help generate predictions about selective forces that have driven animal form and behavior across evolutionary time.
more »
« less
- Award ID(s):
- 1920895
- PAR ID:
- 10447829
- Date Published:
- Journal Name:
- PeerJ
- Volume:
- 11
- ISSN:
- 2167-8359
- Page Range / eLocation ID:
- e15389
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Across the lifespan, humans are biased to look first at what is easy to see, with a handful of well-documented visual saliences shaping our attention (e.g., Itti & Koch, 2001). These attentional biases may emerge from the contexts in which moment-tomoment attention occurs, where perceivers and their social partners actively shape bottom-up saliences, moving their bodies and objects to make targets of interest more salient. The goal of the present study was to determine the bottom-up saliences present in infant egocentric images and to provide evidence on the role that infants and their mature social partners play in highlighting targets of interest via these saliences. We examined 968 unique scenes in which an object had purposefully been placed in the infant’s egocentric view, drawn from videos created by one-year-old infants wearing a head camera during toy-play with a parent. To understand which saliences mattered in these scenes, we conducted a visual search task, asking participants (n = 156) to find objects in the egocentric images. To connect this to the behaviors of perceivers, we then characterized the saliences of objects placed by infants or parents compared to objects that were otherwise present in the scenes. Our results show that body-centric properties, such as increases in the centering and visual size of the object, as well as decreases in the number of competing objects immediately surrounding it, both predicted faster search time and distinguished placed and unplaced objects. The present results suggest that the bottom-up saliences that can be readily controlled by perceivers and their social partners may most strongly impact our attention. This finding has implications for the functional role of saliences in human vision, their origin, the social structure of perceptual environments, and how the relation between bottom-up and top-down control of attention in these environments may support infant learning.more » « less
-
Parental effects, or parental phenotypes affecting offspring phenotypes, are widespread across taxa, yet there is significant variation within species regarding which offspring traits are affected. One reason for this observed variation could be the type of sensory cues present in the parental environment. By exposing parents to sensory cues containing different information about the same ecological stressor, we can determine whether information is integrated differently by parents based on cue type, leading to differential trait development in offspring. In this study, we utilized predator cues, which can be found in isolation and in combination in natural settings, to test whether cue type plays a role in differential phenotype expression in Trinidadian guppies, Poecilia reticulata. Parents were exposed to predator cues (visual, olfactory or both combined) over 14 days, after which we assessed life history traits, morphology and activity. Offspring were then raised with no predator cues and tested for morphology and activity in adulthood. No differences in life history traits were observed across 10 weeks. In line with previous findings, behaviour differed in both the parent and F1 generations in response to predator cues; however, effects were dependent on cue type and sex. Our results suggest that exposure to even a single sensory cue is strong enough to initiate a cascade of responses both in parent and F1 generations, and that interacting factors such as cue type and sex lend importance to understanding consequences of parent risk perception for offspring.more » « less
-
Abstract Predators mediate the strength of trophic cascades indirectly by decreasing the number of prey consuming a basal resource and by altering prey responses that dictate prey foraging. The strength of these indirect effects further depends on abiotic factors. For example, attributes of the environment, such as turbulent flows in aquatic habitats that disrupt spatial information available from chemical cues, can impose “sensory stresses” that impair the ability of predators or prey to detect each other. The multi-faceted impacts of sensory stress on both the predators and prey create challenges in predicting the overall effect on the trophic cascade. Here, we explore how sensory stress affects the strength of trophic cascades using a tri-trophic dynamical model that incorporates the sensory environment and anti-predatory responses. We explore two crucial parameters that govern outcomes of the model. First, we allow predation rates to either strengthen or weaken depending on whether prey or predators are more sensitive to sensory stress, respectively. Second, we explore scenarios where anti-predatory responses can either drive a strong or weak reduction in prey foraging. We find that sensory stress usually weakens trophic cascades except in scenarios where predators are relatively unaffected by sensory stress and the loss of anti-predatory responses does not affect prey foraging. The model finally suggests that “hydra effects” can manifest, whereby an increase in prey population occurs despite an increase in per capita predation. This last feature emerges due to the interaction between logistic growth of the basal resource and anti-predatory responses reducing the over-consumption of the basal resource.more » « less
-
Synopsis To humans, the diverse array of display behaviors that animals use for communication can easily seem peculiar or bizarre. While ample research delves into the evolutionary principles that shape these signals’ effectiveness, little attention is paid to evolutionary patterning of signal design across taxa, particularly when it comes to the potential convergent evolution of many elaborate behavioral displays. By taking a mechanistic perspective, we explore the physiological and neurobiological mechanisms that likely influence the evolution of communication signals, emphasizing the utilization of pre-existing structures over novel adaptations. Central to this investigation are the concepts of perceptual bias and ritualization that we propose contribute to the convergence of elaborate display designs across species. Perceptual bias explains a phenomenon where pre-existing perceptual systems of receivers, used for innate behaviors such as food and predator recognition, select for certain traits of a communication signal from a signaler. Ritualization occurs when traits with no functional role in communication are co-opted through selection and transformed into a new communicative signal. Importantly, susceptibility for ritualization can be brought about through physiological modifications that occurred early in evolutionary time. In this way, perceptual bias can be a selective force that causes the co-option of non-communicative traits into a new communication signal through ritualization involving pre-existing modifications to physiological systems. If the perceptual bias, non-communicative signal, and physiological modifications that increase susceptibility to ritualization are highly conserved, then we may see the convergent evolution of the new communication signal with unrelated taxa facing similar sensory constraints. We explore this idea here using the foot-flagging frog system as a theoretical case study.more » « less
An official website of the United States government

