skip to main content


Title: The Effect of Level of Cementation and Geometry on Stability of Cemented Coastal Bluffs and Slopes
Coastal bluff erosion and recession are among the common mechanisms altering the geomorphology of the coastline in California. The accelerated erosion rate increasingly threatens the stability of structures located on these bluffs. Previous researchers have investigated the effect of material properties and strength on the generation of the shear plane and failure modes of coastal bluffs and cliffs. Monitoring the morphology of the moderately cemented coastal bluffs with time has indicated that a comparison of material strength with the expected insitu minor principal stress distribution can be used as a criterion to assess bluff stability. However, the effect of varying factors such as cementation levels and bluff geometry and dimensions on stress distribution patterns and material properties that determine bluff failure susceptibility requires further investigation. While bond breakage and disturbance during sampling and transportation undermine the quality of recovered soil samples, artificial cementation methods (e.g., Portland cement) may not properly replicate the natural formation processes. Instead, microbially induced carbonate precipitation (MICP) is a ground improvement method that simulates the cementation processes that occur in natural geological settings. This method harnesses the activities of bacteria to generate cementitious precipitation among soil particles. The formation of the cementing agent improves the mechanical properties of the soil. In the past two decades, extensive studies have been devoted to understanding the cementation formation mechanism and the improvement of mechanical properties that can be used as a proxy for natural cemented soil for stability analysis. In the study presented herein, a series of FEM models were developed in SIGMA/W software. The effect of the different cementation levels and variation of bluff geometry on minor principal stress distribution was investigated. Results of the study demonstrated that although the cementation level of the materials determines the failure mode, the stress distribution mainly depends on the bluff geometry. The obtained results offer further insights into the failure mechanism of coastal bluffs as well as MICP-treated slopes for future field implementation of this soil improvement method.  more » « less
Award ID(s):
1933350
NSF-PAR ID:
10447858
Author(s) / Creator(s):
Date Published:
Journal Name:
Geo-Congress 2023; eISBN 9780784484661
Page Range / eLocation ID:
549-557
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Microbially-induced calcium carbonate precipitation (MICP) is a bio-cementation process that can improve the engineering properties of granular soils through the precipitation of calcium carbonate (CaCO3) minerals on soil particle surfaces and contacts. The technology has advanced rapidly as an environmentally conscious soil improvement method, however, our understanding of the effect of changes in field-representative environmental conditions on the physical and chemical properties of resulting precipitates has remained limited. An improved understanding of the effect of subsurface geochemical and soil conditions on process reaction kinetics and the morphology and mineralogy of bio-cementation may be critical towards enabling successful field-scale deployment of the technology and improving our understanding of the long-term chemical permanence of bio-cemented soils in different environments. In this study, thirty-five batch experiments were performed to specifically investigate the influence of seawater ions and varying soil materials on the mineralogy, morphology, and reaction kinetics of ureolytic bio-cementation. During experiments, differences in reaction kinetics were quantified to identify conditions inhibiting CaCO3precipitation and ureolysis. Following experiments, scanning electron microscopy, x-ray diffraction, and chemical composition analyses were employed to quantify differences in mineralogical compositions and material morphology. Ions present in seawater and variations in soil materials were shown to significantly influence ureolytic activity and precipitate mineralogy and morphology, however, calcite remained the predominant CaCO3polymorph in all experiments with relative percentages exceeding 80% by mass in all precipitates.

     
    more » « less
  2. Erosion of coastal dunes during storm events is an increasingly common problem in the face of global climate change and sea-level rise. To investigate the efficacy of bio-mediated ground improvement for reducing the impact of extreme events such as hurricanes, a near-prototype-scale experiment was performed. In the experiment, a model sand dune was constructed in a large wave flume and divided into treated and untreated zones which were instrumented with pressure and moisture sensors. One of the treated sections was subjected to a surface-spray technique to apply bio-cementation. Afterward, the dune was subjected to a discretized severe storm event (a scaled Hurricane Sandy) consisting of 25 trials. Surge runup and drawdown cause surface erosion and also internal instability due to liquefaction. Pore pressure sensors were embedded in different depths of the dune to study the pressure fluctuations during the wave action and the consequent momentary liquefaction phenomenon. Momentary liquefaction leads to detachment of fine sand particles and the initiation of internal erosion and sediment transport. In this project, remote assessment technology (lidar) was used between each trial to evaluate the performance of the dune under the surge flow by detecting the eroded volume of the sand. To better quantify material properties in-situ, a series of triaxial experiments were conducted on bio-cemented cores taken from the formed crust. The strength and stiffness of the cemented sand were measured under different drainage conditions. Element test results indicate a significant increase in critical bed shear stress (τc) due to cementation. 
    more » « less
  3. Rice, J. ; Liu, X. ; Sasanakul, I. ; McIlroy, M. ; Xiao, M. (Ed.)
    Coastal dunes often present the first line of defense for the built environment during extreme wave surge and storm events. In order to protect inland infrastructure, dunes must resist erosion in the face of these incidents. Microbial induced carbonate precipitation (MICP), or more commonly bio-cementation, can be used to increase the critical shear strength of sand and mitigate erosion. To evaluate the performance of bio-cemented dunes, prototypical dunes consisting of clean poorly graded sand collected from the Oregon coast were constructed within the Large Wave Flume at the O.H. Hinsdale Wave Research Laboratory at Oregon State University. The bio-cementation treatment was sprayed onto the surface of the unsaturated dune. The level of cementation was monitored using shear wave velocity measurements throughout the duration of the treatments. The treated and control dunes were subjected to 19 trials of approximately 300 waves each, with each trial increasing in water depth, wave height, and wave period. The performance of the dune was evaluated using lidar scans between each wave trial. The results indicate that the surface spraying treatment technique produced consistent levels of bio-cementation throughout the treated length of the dune and demonstrated significant resistance to erosion from the wave trails. 
    more » « less
  4. null (Ed.)
    Coastal dunes often present the first line of defense for the built environment during extreme wave surge and storm events. In order to protect inland infrastructure, dunes must resist erosion in the face of these incidents. Microbial induced carbonate precipitation (MICP), or more commonly bio-cementation, can be used to increase the critical shear strength of sand and mitigate erosion. To evaluate the performance of bio-cemented dunes, prototypical dunes consisting of clean poorly graded sand collected from the Oregon coast were constructed within the Large Wave Flume at the O.H. Hinsdale Wave Research Laboratory at Oregon State University. The bio-cementation treatment was sprayed onto the surface of the unsaturated dune. The level of cementation was monitored using shear wave velocity measurements throughout the duration of the treatments. The treated and control dunes were subjected to 19 trials of approximately 300 waves each, with each trial increasing in water depth, wave height, and wave period. The performance of the dune was evaluated using lidar scans between each wave trial. The results indicate that the surface spraying treatment technique produced consistent levels of bio-cementation throughout the treated length of the dune and demonstrated significant resistance to erosion from the wave trails. 
    more » « less
  5. Coastal dunes often present the first line of defense for the built environment during extreme wave surge and storm events. In order to protect inland infrastructure, dunes must resist erosion in the face of these incidents. Microbial induced carbonate precipitation (MICP), or more commonly bio-cementation, can be used to increase the critical shear strength of sand and mitigate erosion. To evaluate the performance of bio-cemented dunes, prototypical dunes consisting of clean poorly graded sand collected from the Oregon coast were constructed within the Large Wave Flume at the O.H. Hinsdale Wave Research Laboratory at Oregon State University. The bio-cementation treatment was sprayed onto the surface of the unsaturated dune. The level of cementation was monitored using shear wave velocity measurements throughout the duration of the treatments. The treated and control dunes were subjected to 19 trials of approximately 300 waves each, with each trial increasing in water depth, wave height, and wave period. The performance of the dune was evaluated using lidar scans between each wave trial. The results indicate that the surface spraying treatment technique produced consistent levels of bio-cementation throughout the treated length of the dune and demonstrated significant resistance to erosion from the wave trails. 
    more » « less