skip to main content


Title: The hidden legacy of megafaunal extinction: Loss of functional diversity and resilience over the Late Quaternary at Hall’s Cave
Abstract Aim

Functional traits mediate the interactions of species among themselves and with their environment, providing a link between diversity and ecosystem function. Crucially, the loss of biodiversity can jeopardize the functionality of ecosystems. Much focus is on predicting the impacts of current and future species loss; however, modern ecosystems have undergone biodiversity decline throughout the Late Quaternary, starting with the Pleistocene megafaunal extinctions. Thus, the fossil record offers the opportunity to investigate the long‐term legacy of biodiversity erosion and how this is affecting modern ecosystems in a cumulative manner. We aimed to investigate changes in functional diversity and redundancy of a local mammal community at Hall’s Cave, a site with a continuous record from 21,000 years ago to the present. Additionally, we included several common introduced species in the modern community to test whether they restore some lost ecological function.

Location

Central Texas.

Time period

Late Pleistocene to Present.

Major taxa studied

Mammals.

Methods

We used eight functional traits (mass, diet, arboreality, cursoriality, soil disturbance, group size, activity period and migration habit), which, collectively, describe the ecological role of a species and its influence on ecosystem processes, to construct a multidimensional functional space. The functional richness, range and distribution of the Hall’s Cave community and the degree of functional redundancy were characterized statistically over time.

Results

We found that declines in functional diversity were greater than expected given the decrease in species richness, implying that lost taxa contributed higher than average distinct ecological function. Functional distances between the remaining species increased through time, leading to reduced functional redundancy in younger communities. However, recently introduced taxa increased functional diversity to levels similar to those in the Holocene and partly restored the functional space occupied by Late Pleistocene fauna.

Main conclusions

Our local‐scale analysis demonstrates how prolonged biodiversity erosion not only leads to functionally depauperate communities, but, crucially, lowers ecological resilience to future disturbance.

 
more » « less
NSF-PAR ID:
10447960
Author(s) / Creator(s):
 ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Ecology and Biogeography
Volume:
31
Issue:
2
ISSN:
1466-822X
Page Range / eLocation ID:
p. 294-307
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In light of rapid shifts in biodiversity associated with human impacts, there is an urgent need to understand how changing patterns in biodiversity impact ecosystem function. Functional redundancy is hypothesized to promote ecological resilience and stability, as ecosystem function of communities with more redundant species (those that perform similar functions) should be buffered against the loss of individual species. While functional redundancy is being increasingly quantified, few studies have linked differences in redundancy across communities to ecological outcomes. We conducted a review and meta‐analysis to determine whether empirical evidence supports the asserted link between functional redundancy and ecosystem stability and resilience. We reviewed 423 research articles and assembled a data set of 32 studies from 15 articles across aquatic and terrestrial ecosystems. Overall, the mean correlation between functional redundancy and ecological stability/resilience was positive. The mean positive effect of functional redundancy was greater for studies in which redundancy was measured as species richness within functional groups (vs. metrics independent of species richness), but species richness itself was not correlated with effect size. The results of this meta‐analysis indicate that functional redundancy may positively affect community stability and resilience to disturbance, but more empirical work is needed including more experimental studies, partitioning of richness and redundancy effects, and links to ecosystem functions.

     
    more » « less
  2. Understanding how plant communities of the past have responded to disturbance events can provide valuable insights when managing our natural resources and assessing human impacts on ecosystems. The geologic record has the potential to reflect these responses through the analysis of functional traits, which relate directly to plant function and ecosystem strategy. There is currently little evidence of how functional traits measurable in fossil leaves vary across succession in different forest types. Because of this, there is a limited ability to identify disturbance as the primary driver of vegetation change within the fossil record. To improve this ability, this study analyzes the carbon stable isotopic composition (δ 13C) of bulk organic matter sampled at the community-scale across successional gradients in a temperate deciduous forest (North Carolina, USA) and compares them against values from a previous study across succession in a tropical evergreen forest (Malaysian Borneo). Leaf δ13C is representative of a plant's water use efficiency (WUE), an important axis of ecological strategy representing the carbon assimilated per water lost in a plant during photosynthesis. Leaf δ13C as a functional trait has the advantage that it is often preserved during leaf fossilization and, integrated across a plant community, can be informative about prevalent ecological strategies, functional diversity , and community assembly dynamics. In Borneo, the community-weighted mean of leaf δ13C to be highest in early-succession plots, indicative of a higher WUE in plant communities closely following a disturbance event. Old growth plots were found to have a lower δ13C, and thus a more conservative WUE. This study will further investigate if this trend is followed within temperate forests, which is important as many mid-late Cenozoic plant assemblages come from what would have been temperate regions. Developing a method of identifying disturbances within the geologic record, will improve the ability to discern drivers of plant community change in the past. This improved knowledge will help guide management decisions across a range of ecosystems. 
    more » « less
  3. Abstract Aim

    Native biodiversity is threatened by the spread of non‐native invasive species. Many studies demonstrate that invasions reduce local biodiversity but we lack an understanding of how impacts vary across environments at the macroscale. Using ~11,500 vegetation surveys from ecosystems across the United States, we quantified how the relationship between non‐native plant cover and native plant diversity varied across different compositions of invading plants (measured by non‐native plant richness and evenness) and environmental contexts (measured by productivity and human activity).

    Location

    Continental United States.

    Time Period

    Surveys from 1990s‐present.

    Major Taxa Studied

    Terrestrial plant communities.

    Methods

    We fit mixed effects models to understand how native plant richness, diversity and evenness varied with non‐native cover. We tested how this relationship varied when non‐native cover interacted with non‐native plant richness and evenness, and with productivity and human activity.

    Results

    Across the United States, communities with greater cover of non‐native plants had lower native plant richness and diversity but higher evenness, suggesting rare native plants can be lost while dominant plants decline in abundance. The relationship between non‐native cover and native community diversity varied with non‐native plant richness and evenness but was not associated with productivity and human activity. Negative associations were strongest in areas with low non‐native richness and evenness, characterizing plant communities that were invaded by a dominant non‐native plant.

    Main Conclusions

    Non‐native plant cover provides a first approximation of invasion impacts on native community diversity, but the magnitude of impact depended on non‐native plant richness and evenness. Relationships between non‐native cover and native diversity were consistent in strength across continental scale gradients of productivity and human activity. Therefore, at the macroscale, invasive plant impacts on native plant communities likely depend more on the characteristics of the invading plants, that is the presence of a dominant invader, than on the environmental context.

     
    more » « less
  4. Abstract Aim

    Understanding how ecological communities are assembled remains a grand challenge in ecology with direct implications for charting the future of biodiversity. Trait‐based methods have emerged as the leading approach for quantifying functional community structure (convergence, divergence) but their potential for inferring assembly processes rests on accurately measuring functional dissimilarity among community members. Here, we argue that trait resolution (from finest‐resolution continuous measurements to coarsest‐resolution binary categories) remains a critically overlooked methodological variable, even though categorical classification is known to mask functional variability and inflate functional redundancy among species or individuals.

    Innovation

    We present the first detailed predictions of trait resolution biases and demonstrate, with simulations, how the distortion of signal strength by increasingly coarse‐resolution traits can fundamentally alter functional structure patterns and the interpretation of causative ecological processes (e.g. abiotic filters, biotic interactions). We show that coarser trait data impart different impacts on the signals of divergence and convergence, implying that the role of biotic interactions may be underestimated when using coarser traits. Furthermore, in some systems, coarser traits may overestimate the strength of trait convergence, leading to erroneous support for abiotic processes as the primary drivers of community assembly or change.

    Main conclusions

    Inferences of assembly processes must account for trait resolution to ensure robust conclusions, especially for broad‐scale studies of comparative community assembly and biodiversity change. Despite recent improvements in the collection and availability of trait data, great disparities continue to exist among taxa in the number and availability of continuous traits, which are more difficult to acquire for large numbers of species than coarse categorical assignments. Based on our simulations, we urge the consideration of trait resolution in the design and interpretation of community assembly studies and suggest a suite of practical solutions to address the pitfalls of trait resolution biases.

     
    more » « less
  5. Abstract Aim

    Mountains provide uniquely informative systems for examining how biodiversity is distributed and identifying the causes of those patterns. Elevational patterns of species richness are well‐documented for many taxa but comparatively few studies have investigated patterns in multiple dimensions of biodiversity along mountainsides, which can reveal the underlying processes at play. Here, we use trait‐based diversity patterns to determine the role of abiotic filters and competition in the assembly of communities of small mammals across elevation and evaluate the surrogacy of taxonomic, functional, and phylogenetic dimensions of diversity.

    Location

    Great Basin ecoregion, western North America.

    Taxon

    Rodents and shrews.

    Methods

    The elevational distributions of 34 species were determined from comprehensive field surveys conducted in three arid, temperate mountain ranges. Elevation–diversity relationships and community assembly processes were inferred from phylogenetic (PD) and functional diversity (FD) patterns of mean pairwise and mean nearest‐neighbor distances while accounting for differences in species richness. FD indices were calculated separately for traits related to either abiotic filtering (β‐niche traits) or biotic interactions (α‐niche traits) to test explicit predictions of the role of each across elevation.

    Results

    Trait‐based tests of processes indicated that abiotic filtering tied to a strong aridity gradient drives the assembly of both low‐ and high‐elevation communities. Support for competition was not consistent with theoretical expectations under the stress‐dominance hypothesis, species interactions‐abiotic stress hypothesis, or guild assembly rule. Mid‐elevation peaks in species richness contrasted with overall FD and PD, which generally increased with elevation. PD and total FD were correlated on two of three mountains.

    Main conclusions

    The functional diversity of small mammal communities in these arid, temperate mountains is most consistent with abiotic filters, whereas support for competition is weak. Decomposing FD into traits related to separate assembly processes and examining ecoregional variation in diversity were critical for uncovering the generality of mechanisms. Divergent patterns among dimensions revealed species richness to be a poor surrogate for PD and FD across elevation and reflect the effect of biogeographic and evolutionary history. This first analysis of elevational multidimensional diversity gradients for temperate mammals provides a versatile framework for future comparative studies.

     
    more » « less