skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pitfalls of ignoring trait resolution when drawing conclusions about ecological processes
Abstract AimUnderstanding how ecological communities are assembled remains a grand challenge in ecology with direct implications for charting the future of biodiversity. Trait‐based methods have emerged as the leading approach for quantifying functional community structure (convergence, divergence) but their potential for inferring assembly processes rests on accurately measuring functional dissimilarity among community members. Here, we argue that trait resolution (from finest‐resolution continuous measurements to coarsest‐resolution binary categories) remains a critically overlooked methodological variable, even though categorical classification is known to mask functional variability and inflate functional redundancy among species or individuals. InnovationWe present the first detailed predictions of trait resolution biases and demonstrate, with simulations, how the distortion of signal strength by increasingly coarse‐resolution traits can fundamentally alter functional structure patterns and the interpretation of causative ecological processes (e.g. abiotic filters, biotic interactions). We show that coarser trait data impart different impacts on the signals of divergence and convergence, implying that the role of biotic interactions may be underestimated when using coarser traits. Furthermore, in some systems, coarser traits may overestimate the strength of trait convergence, leading to erroneous support for abiotic processes as the primary drivers of community assembly or change. Main conclusionsInferences of assembly processes must account for trait resolution to ensure robust conclusions, especially for broad‐scale studies of comparative community assembly and biodiversity change. Despite recent improvements in the collection and availability of trait data, great disparities continue to exist among taxa in the number and availability of continuous traits, which are more difficult to acquire for large numbers of species than coarse categorical assignments. Based on our simulations, we urge the consideration of trait resolution in the design and interpretation of community assembly studies and suggest a suite of practical solutions to address the pitfalls of trait resolution biases.  more » « less
Award ID(s):
1926598
PAR ID:
10452298
Author(s) / Creator(s):
 ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Ecology and Biogeography
Volume:
30
Issue:
5
ISSN:
1466-822X
Page Range / eLocation ID:
p. 1139-1152
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Intraspecific trait variation (ITV) is an increasingly important aspect of biodiversity and can provide a more complete perspective on how abiotic and biotic processes affect individuals, species' niches and ultimately community‐level structure than traditional uses of trait means. Body size serves as a proxy for a suite of traits that govern species' niches. Distributions of co‐occurring species body sizes can inform niche overlap, relate to species richness and uncover mechanistic drivers of diversity.We leveraged individual‐level body size (length) in freshwater fishes and environmental data from the National Ecological Observatory Network (NEON) for 17 lakes and streams in the contiguous United States to explore how abiotic and biotic factors influence fish species richness and trait distributions of body size. We calculated key abiotic (climate, productivity, land use) and biotic (phylogenetic diversity, trait diversity, community‐level overlap of trait probability densities) variables for each site to test hypotheses about drivers of ITV in body size and fish diversity.Abiotic variables were consistently important in explaining variation in fish body size and species richness across sites. In particular, productivity (as chlorophyll) was a key variable in explaining variation in body size trait richness, evenness and divergence, as well as species richness.This study yields new insights into continental‐scale patterns of freshwater fishes, possible only by leveraging the paired high frequency, in situ abiotic data and individual‐level traits collected by NEON. 
    more » « less
  2. Abstract AimTheoretical, experimental and observational studies have shown that biodiversity–ecosystem functioning (BEF) relationships are influenced by functional community structure through two mutually non‐exclusive mechanisms: (1) the dominance effect (which relates to the traits of the dominant species); and (2) the niche partitioning effect [which relates to functional diversity (FD)]. Although both mechanisms have been studied in plant communities and experiments at small spatial extents, it remains unclear whether evidence from small‐extent case studies translates into a generalizable macroecological pattern. Here, we evaluate dominance and niche partitioning effects simultaneously in grassland systems world‐wide. LocationTwo thousand nine hundred and forty‐one grassland plots globally. Time period2000–2014. Major taxa studiedVascular plants. MethodsWe obtained plot‐based data on functional community structure from the global vegetation plot database “sPlot”, which combines species composition with plant trait data from the “TRY” database. We used data on the community‐weighted mean (CWM) and FD for 18 ecologically relevant plant traits. As an indicator of primary productivity, we extracted the satellite‐derived normalized difference vegetation index (NDVI) from MODIS. Using generalized additive models and deviation partitioning, we estimated the contributions of trait CWM and FD to the variation in annual maximum NDVI, while controlling for climatic variables and spatial structure. ResultsGrassland communities dominated by relatively tall species with acquisitive traits had higher NDVI values, suggesting the prevalence of dominance effects for BEF relationships. We found no support for niche partitioning for the functional traits analysed, because NDVI remained unaffected by FD. Most of the predictive power of traits was shared by climatic predictors and spatial coordinates. This highlights the importance of community assembly processes for BEF relationships in natural communities. Main conclusionsOur analysis provides empirical evidence that plant functional community structure and global patterns in primary productivity are linked through the resource economics and size traits of the dominant species. This is an important test of the hypotheses underlying BEF relationships at the global scale. 
    more » « less
  3. Communities that occupy similar environments but vary in the richness of closely related species can illuminate how functional variation and species richness interact to fill ecological space in the absence of abiotic filtering, though this has yet to be explored on an oceanic island where the processes of community assembly may differ from continental settings. In discrete montane communities on the island of Sulawesi, local murine rodent (rats and mice) richness ranges from 7 to 23 species. We measured 17 morphological, ecological, and isotopic traits – both individually and as five multivariate traits – in 40 species to test for the expansion or packing of functional space among nine murine communities. We employed a novel probabilistic approach for integrating intraspecific and community‐level trait variance into functional richness. Trait‐specific and phylogenetic diversity patterns indicate dynamic community assembly due to variable niche expansion and packing on multiple niche axes. Locomotion and covarying traits such as tail length emerged as a fundamental axis of ecological variation, expanding functional space and enabling the niche packing of other traits such as diet and body size. Though trait divergence often explains functional diversity in island communities, we found that phylogenetic diversity facilitates functional space expansion in some conserved traits such as cranial shape, while more labile traits are overdispersed both within and between island clades, suggesting a role of niche complementarity. Our results evoke interspecific interactions, differences in trait lability, and the independent evolutionary trajectories of each of Sulawesi's six murine clades as central to generating the exceptional functional diversity and species richness in this exceptional, insular radiation. 
    more » « less
  4. Abstract BackgroundPollinators impose strong selection on floral traits, but other abiotic and biotic agents also drive the evolution of floral traits and influence plant reproduction. Global change is expected to have widespread effects on biotic and abiotic systems, resulting in novel selection on floral traits in future conditions. ScopeGlobal change has depressed pollinator abundance and altered abiotic conditions, thereby exposing flowering plant species to novel suites of selective pressures. Here, we consider how biotic and abiotic factors interact to shape the expression and evolution of floral characteristics (the targets of selection), including floral size, colour, physiology, reward quantity and quality, and longevity, amongst other traits. We examine cases in which selection imposed by climatic factors conflicts with pollinator-mediated selection. Additionally, we explore how floral traits respond to environmental changes through phenotypic plasticity and how that can alter plant fecundity. Throughout this review, we evaluate how global change might shift the expression and evolution of floral phenotypes. ConclusionsFloral traits evolve in response to multiple interacting agents of selection. Different agents can sometimes exert conflicting selection. For example, pollinators often prefer large flowers, but drought stress can favour the evolution of smaller flowers, and the size of floral organs can evolve as a trade-off between selection mediated by these opposing actors. Nevertheless, few studies have manipulated abiotic and biotic agents of selection factorially to disentangle their relative strengths and directions of selection. The literature has more often evaluated plastic responses of floral traits to stressors than it has considered how abiotic factors alter selection on these traits. Global change will likely alter the selective landscape through changes in the abundance and community composition of mutualists and antagonists and novel abiotic conditions. We encourage future work to consider the effects of abiotic and biotic agents of selection on floral evolution, which will enable more robust predictions about floral evolution and plant reproduction as global change progresses. 
    more » « less
  5. Abstract BackgroundAs habitat fragmentation increases, ecological processes, including patterns of vector-borne pathogen prevalence, will likely be disrupted, but ongoing investigations are necessary to examine this relationship. Here, we report the differences in the prevalence of Lyme disease (Borrelia burgdorferisensu lato, s.l.) and haemoproteosis (Haemoproteusspp.) pathogens in avian populations of a fragmented habitat.B. burgdorferis.l. is a generalist pathogen that is transmitted byIxodes pacificusvectors in California, andHaemoproteusis an avian parasite transmitted byCulicoidesvectors. MethodsTo determine whether biotic (avian and mammalian abundance) or abiotic characteristics (patch size and water availability) correlated with infection prevalence change, we screened 176 birds sampled across seven sites in oak woodland habitat in northern California. ResultsWhile biotic factors correlated with an increase in both pathogens, infection prevalence ofHaemoproteusspp. was only associated with individual-level traits, specifically foraging substrate and diet, andB. burgdorferis.l. was associated with community-level characteristics, both total mammal and, specifically, rodent abundance. Proximity to water was the only abiotic factor found to be significant for both pathogens and reinforces the importance of water availability for transmission cycles. Larger patch sizes did not significantly affect infection prevalence ofHaemoproteus,but did increase the prevalence ofB. burgdorferi. ConclusionsThese results highlight that while environmental factors (specifically habitat fragmentation) have a limited role in vector-borne pathogen prevalence, the indirect impact to biotic factors (community composition) can have consequences for bothHaemoproteusandB. burgdorferiprevalence in birds. Given the pervasiveness of habitat fragmentation, our results are of broad significance. Graphical abstract 
    more » « less