skip to main content


Title: U.S. Extreme Precipitation Weather Types Increased in Frequency During the 20th Century
Abstract

Extreme precipitation has increased in frequency and intensity across the Conterminous U.S. (CONUS). This trend is expected to continue under future climate change. The cause is a combination of thermodynamic (i.e., warmer temperatures increase the atmospheric moisture content) and dynamic changes (e.g., shifts in cyclone frequency and tracks). It is well‐established that thermodynamic changes will intensify extreme precipitation events, but the impacts of dynamic changes are more uncertain. Extreme events are, per definition, rare and occur in unusual weather situations that are distinctly different from regular day‐to‐day weather. We take advantage of this and identify extreme precipitation‐producing weather patterns (XWTs) for all major watersheds across the CONUS by using a novel algorithm. We show that a set of one to four XWTs per watershed are causing extreme precipitation accumulations. These XWTs can be detected based on their synoptic‐scale fingerprint and are associated with West Coast atmospheric rivers, troughing in the desert Southwest, cutoff lows and troughs in the central and northwestern plains, and tropical cyclones along the Gulf and Atlantic coast. The algorithm is flexible enough to provide reliable results for city to major watershed‐scales and can detect extremes that are unprecedented in the training record. Importantly, this approach allows us to assess long‐term trends in extreme precipitation dynamics and reveal that XWT frequencies increased significantly in most U.S. watersheds during the 20th century indicating that changes in the atmospheric dynamics played an important role in historic extreme precipitation increases.

 
more » « less
NSF-PAR ID:
10447978
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
126
Issue:
7
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short‐term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well‐developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments. Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short‐ and long‐term. We summarize the current understanding of storm‐induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions.

     
    more » « less
  2. Abstract

    Extreme precipitation events, including those associated with weather fronts, have wide‐ranging impacts across the world. Here we use a deep learning algorithm to identify weather fronts in high resolution Community Earth System Model (CESM) simulations over the contiguous United States (CONUS), and evaluate the results using observational and reanalysis products. We further compare results between CESM simulations using present‐day and future climate forcing, to study how these features might change with climate change. We find that detected front frequencies in CESM have seasonally varying spatial patterns and responses to climate change and are found to be associated with modeled changes in large scale circulation such as the jet stream. We also associate the detected fronts with precipitation and find that total and extreme frontal precipitation mostly decreases with climate change, with some seasonal and regional differences. Decreases in Northern Hemisphere summer frontal precipitation are largely driven by changes in the frequency of different front types, especially cold and stationary fronts. On the other hand, Northern Hemisphere winter exhibits some regional increases in frontal precipitation that are largely driven by changes in frontal precipitation intensity. While CONUS mean and extreme precipitation generally increase during all seasons in these climate change simulations, the likelihood of frontal extreme precipitation decreases, demonstrating that extreme precipitation has seasonally varying sources and mechanisms that will continue to evolve with climate change.

     
    more » « less
  3. Abstract

    Mean daily to monthly precipitation averages peak in late July over eastern Colorado and some of the most damaging Front Range flash floods have occurred because of extreme 1-day rainfall events during this period. Tree-ring chronologies of adjusted latewood width in ponderosa pine from eastern Colorado are highly correlated with the highest 1-day rainfall totals occurring during this 2-week precipitation maximum in late July. A regional average of four adjusted latewood chronologies from eastern Colorado was used to reconstruct the single wettest day observed during the last two weeks of July. The regional chronology was calibrated with the CPC 0.25° × 0.25° Daily U.S. Unified Gauge-Based Analysis of Precipitation dataset and explains 65% of the variance in the highest 1-day late July precipitation totals in the instrumental data from 1948 to 1997. The reconstruction and instrumental data extend fully from 1779 to 2019 and indicate that the frequency of 1-day rainfall extremes in late July has increased since the late eighteenth century. The largest instrumental and reconstructed 1-day precipitation extremes are most commonly associated with the intrusion of a major frontal system into a deep layer of atmospheric moisture across eastern Colorado. These general synoptic conditions have been previously linked to extreme localized rainfall totals and widespread thunderstorm activity over Colorado during the summer season. Chronologies of adjusted latewood width in semiarid eastern Colorado constitute a proxy of weather time-scale rainfall events useful for investigations of long-term variability and for framing natural and potential anthropogenic forcing of precipitation extremes during this 2-week precipitation maximum in a long historical perspective.

     
    more » « less
  4. Abstract

    The Antarctic ice sheet (AIS) is sensitive to short‐term extreme meteorological events that can leave long‐term impacts on the continent's surface mass balance (SMB). We investigate the impacts of atmospheric rivers (ARs) on the AIS precipitation budget using an AR detection algorithm and a regional climate model (Modèle Atmosphérique Régional) from 1980 to 2018. While ARs and their associated extreme vapor transport are relatively rare events over Antarctic coastal regions (∼3 days per year), they have a significant impact on the precipitation climatology. ARs are responsible for at least 10% of total accumulated snowfall across East Antarctica (localized areas reaching 20%) and a majority of extreme precipitation events. Trends in AR annual frequency since 1980 are observed across parts of AIS, most notably an increasing trend in Dronning Maud Land; however, interannual variability in AR frequency is much larger. This AR behavior appears to drive a significant portion of annual snowfall trends across East Antarctica, while controlling the interannual variability of precipitation across most of the AIS. AR landfalls are most likely when the circumpolar jet is highly amplified during blocking conditions in the Southern Ocean. There is a fingerprint of the Southern Annular Mode (SAM) on AR variability in West Antarctica with SAM+ (SAM−) favoring increased AR frequency in the Antarctic Peninsula (Amundsen‐Ross Sea coastline). Given the relatively large influence ARs have on precipitation across the continent, it is advantageous for future studies of moisture transport to Antarctica to consider an AR framework especially when considering future SMB changes.

     
    more » « less
  5. Abstract Background

    Infections with nontyphoidalSalmonellacause an estimated 19,336 hospitalizations each year in the United States. Sources of infection can vary by state and include animal and plant-based foods, as well as environmental reservoirs. Several studies have recognized the importance of increased ambient temperature and precipitation in the spread and persistence ofSalmonellain soil and food. However, the impact of extreme weather events onSalmonellainfection rates among the most prevalent serovars, has not been fully evaluated across distinct U.S. regions.

    Methods

    To address this knowledge gap, we obtainedSalmonellacase data forS.Enteriditis,S.Typhimurium,S.Newport, andS.Javiana (2004-2014; n = 32,951) from the Foodborne Diseases Active Surveillance Network (FoodNet), and weather data from the National Climatic Data Center (1960-2014). Extreme heat and precipitation events for the study period (2004-2014) were identified using location and calendar day specific 95thpercentile thresholds derived using a 30-year baseline (1960-1989). Negative binomial generalized estimating equations were used to evaluate the association between exposure to extreme events and salmonellosis rates.

    Results

    We observed that extreme heat exposure was associated with increased rates of infection withS.Newport in Maryland (Incidence Rate Ratio (IRR): 1.07, 95% Confidence Interval (CI): 1.01, 1.14), and Tennessee (IRR: 1.06, 95% CI: 1.04, 1.09), both FoodNet sites with high densities of animal feeding operations (e.g., broiler chickens and cattle). Extreme precipitation events were also associated with increased rates ofS.Javiana infections, by 22% in Connecticut (IRR: 1.22, 95% CI: 1.10, 1.35) and by 5% in Georgia (IRR: 1.05, 95% CI: 1.01, 1.08), respectively. In addition, there was an 11% (IRR: 1.11, 95% CI: 1.04-1.18) increased rate ofS. Newport infections in Maryland associated with extreme precipitation events.

    Conclusions

    Overall, our study suggests a stronger association between extreme precipitation events, compared to extreme heat, and salmonellosis across multiple U.S. regions. In addition, the rates of infection withSalmonellaserovars that persist in environmental or plant-based reservoirs, such asS.Javiana andS.Newport, appear to be of particular significance regarding increased heat and rainfall events.

     
    more » « less