The Paleocene‐Eocene Thermal Maximum (PETM) is the most pronounced global warming event of the early Paleogene related to atmospheric CO2increases. It is characterized by negative δ18O and δ13C excursions recorded in sedimentary archives and a transient disruption of the marine biosphere. Sites from the U.S. Atlantic Coastal Plain show an additional small, but distinct δ13C excursion below the onset of the PETM, coined the “pre‐onset excursion” (POE), mimicking the PETM‐forced environmental perturbations. This study focuses on the South Dover Bridge core in Maryland, where the Paleocene‐Eocene transition is stratigraphically constrained by calcareous nannoplankton and stable isotope data, and in which the POE is well‐expressed. The site was situated in a middle neritic marine shelf setting near a major outflow of the paleo‐Potomac River system. We generated high‐resolution benthic foraminiferal assemblage, stable isotope, trace‐metal, grain‐size and clay mineralogy data. The resulting stratigraphic subdivision of this Paleocene‐Eocene transition is placed within a depth transect across the paleoshelf, highlighting that the PETM sequence is relatively expanded. The geochemical records provide detailed insights into the paleoenvironment, developing from a well‐oxygenated water column in latest Paleocene to a PETM‐ecosystem under severe biotic stress‐conditions, with shifts in food supply and temperature, and under dysoxic bottom waters in a more river‐dominated setting. Environmental changes started in the latest Paleocene and culminated atthe onset of the PETM, hinting to an intensifying trigger rather than to an instantaneous event at the Paleocene‐Eocene boundary toppling the global system.
Carbon isotope (δ13C) records from marine sediments and sedimentary rocks have been extensively used in Cenozoic chemostratigraphy. The early Paleogene interval in particular has received exceptional attention because negative carbon isotope excursions (CIEs) documented in the sedimentary record, for example, at the Paleocene Eocene Thermal Maximum (PETM), ca ∼56 Ma, are believed to reflect significant global carbon cycle perturbations during the warmest interval of the Cenozoic era. However, while bulk carbonate δ13C values exhibit robust correlations across widely separated marine sedimentary basins, their absolute values and magnitude of CIEs vary spatially, especially over time intervals characterized by major deviations in global carbon cycling. Moreover, bulk carbonates in open‐marine environments are an ensemble of different components, each with a distinct isotope composition. Consequently, a comprehensive interpretation of the bulk‐δ13C record requires an understanding of co‐evolution of these components. In this study, we dissect sediments, from the late Paleocene‐early Eocene interval, at ODP Site 1209 (Shatsky Rise, Pacific Ocean) to investigate how a temporally varying bulk carbonate ensemble influences the overall carbon isotope record. A set of 45 samples were examined for δ13C and δ18O compositions, as bulk and individual size fractions. We find a significant increase in coarse‐fraction abundance across the PETM, driven by a changing community structure of calcifiers, modulating the size of the CIE at Site 1209 and thus making it distinct from those recorded at other open‐marine sites. These results highlight the importance of biogeography in the marine stable isotope record, especially when isotope excursions are driven by climate‐ and/or carbon cycle changes. In addition, community composition changes will alter the interpretation of weight percent coarse fraction as proxy for carbonate dissolution.
more » « less- PAR ID:
- 10447997
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Paleoceanography and Paleoclimatology
- Volume:
- 36
- Issue:
- 5
- ISSN:
- 2572-4517
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract The Paleocene‐Eocene Thermal Maximum (PETM; 56 Ma) is considered to be one of the best analogs for future climate change. The carbon isotope composition (δ13C) of
n ‐alkanes derived from leaf waxes of terrestrial plants and marine algae can provide important insights into the carbon cycle perturbation during the PETM. Here, we present new organic geochemical data and compound‐specific δ13C data from sediments recovered from an early Cenozoic basin‐margin succession from Spitsbergen. These samples represent one of the most expanded PETM sites and provide new insights into the high Arctic response to the PETM. Our results reveal a synchronous ∼−6.5‰ carbon isotope excursion (CIE) in short‐chainn ‐alkanes (n C19; marine algae/bacteria) with a ∼−5‰ CIE in long‐chainn ‐alkanes (n C29andn C31; plant waxes) during the peak of the PETM. Although δ13Cn ‐alkanesvalues were potentially affected via a modest thermal effect (1‰–2‰), the relative changes in the δ13Cn ‐alkanesremain robust. A simple carbon cycle modeling suggests peak carbon emission rate could be ∼3 times faster than previously suggested using δ13CTOCrecords. The CIE magnitude of both δ13Cn ‐C19and δ13Cn ‐C29can be explained by the elevated influence of13C‐depleted respired CO2in the water column and increased water availability on land, elevatedp CO2in the atmosphere, and changes in vegetation type during the PETM. The synchronous decline in δ13C of both leaf waxes and marine algae/bacteria argues against a significant contribution to the sedimentary organic carbon pool from the weathering delivery of fossiln ‐alkanes in the Arctic region. -
Abstract Environmental and biotic responses to early Eocene hyperthermal events in the southwest Pacific are critical for global paleoclimate reconstructions during Cenozoic greenhouse intervals, but detailed multidisciplinary studies are generally missing from this time and location. Eocene carbonate sediments were recovered during International Ocean Discovery Program Expedition 371 at Site U1510 on southern Lord Howe Rise in the Tasman Sea. Part of the Early Eocene Climatic Optimum (EECO; 53.26–49.14 Ma) and superimposed hyperthermal events have been identified based on refined calcareous nannofossil biostratigraphic data and carbon stable isotope records on bulk sediment and benthic foraminifera. Four negative carbon isotope excursions (CIEs) associated with negative oxygen isotope excursions are recognized within the EECO. Comparison with a global compilation of sites indicates these CIEs correlate to the K event (Eocene Thermal Maximum 3), and tentatively to the S, T, and U events. Sediments with a high carbonate content throughout the EECO provide an excellent opportunity to examine these CIEs, as carbonate dissolution often impacts correlative records elsewhere. Benthic foraminifera and calcareous nannoplankton taxa indicative of warm waters are most abundant during the K event, the most prominent hyperthermal of the EECO. Eutrophication of surface waters during the K event did not lead to increased trophic conditions at the seafloor, whereas a coupled response is observed during smaller hyperthermals. The biotic turnover sheds new light on the paleoenvironmental consequences of hyperthermal events.
-
Introduction: The Yucca Formation is a Lower Cretaceous sedimentary unit present in West Texas. Based on its relative stratigraphic position in the Cretaceous succession of West Texas, it is expected that the Yucca Formation is of Albian and/or Aptian age. It is also expected that the carbon isotope excursions associated with OAE 1a and OAE 1b should be identified in the Yucca Formation. The goals of this project are to 1. construct a carbon isotope chemostratigraphic record of the Yucca Formation, and 2. correlate the Yucca Formation with strata of similar age using chemostratigraphy.Methods: 163 samples were collected from Big Bend Ranch State Park (BBRSP) to determine the δ13C value of bulk sedimentary organic matter.Results: C-isotope values range from −27.02‰ to −18.42‰.Discussion: Carbon isotope excursions (CIEs) that are associated with the Aptian-Albian Boundary are identified as well as CIEs associated with Oceanic Anoxic Events (1a and 1b). This allows us to conclude that the Aptian-Albian boundary is recorded within the Yucca Formation strata at about 71 m above the base of the section exposed in the Lower Shutup of the Solitario in Big Bend Ranch State Park. Regional correlation of the Yucca Formation to other chemostratigraphic records from other Cretaceous strata suggests that the Yucca Formation in BBRSP is time equivalent to the Sligo, Pine Island, James, Bexar, and a portion of the lower Glen Rose Formation on the Comanche Platform and to a portion of the lower Glen Rose Formation in Big Bend National Park. -
Abstract A negative carbon isotope excursion recorded in terrestrial and marine archives reflects massive carbon emissions into the exogenic carbon reservoir during the Paleocene-Eocene Thermal Maximum. Yet, discrepancies in carbon isotope excursion estimates from different sample types lead to substantial uncertainties in the source, scale, and timing of carbon emissions. Here we show that membrane lipids of marine planktonic archaea reliably record both the carbon isotope excursion and surface ocean warming during the Paleocene-Eocene Thermal Maximum. Novel records of the isotopic composition of crenarchaeol constrain the global carbon isotope excursion magnitude to −4.0 ± 0.4‰, consistent with emission of >3000 Pg C from methane hydrate dissociation or >4400 Pg C for scenarios involving emissions from geothermal heating or oxidation of sedimentary organic matter. A pre-onset excursion in the isotopic composition of crenarchaeol and ocean temperature highlights the susceptibility of the late Paleocene carbon cycle to perturbations and suggests that climate instability preceded the Paleocene-Eocene Thermal Maximum.