Carbon isotope (δ13C) records from marine sediments and sedimentary rocks have been extensively used in Cenozoic chemostratigraphy. The early Paleogene interval in particular has received exceptional attention because negative carbon isotope excursions (CIEs) documented in the sedimentary record, for example, at the Paleocene Eocene Thermal Maximum (PETM), ca ∼56 Ma, are believed to reflect significant global carbon cycle perturbations during the warmest interval of the Cenozoic era. However, while bulk carbonate δ13C values exhibit robust correlations across widely separated marine sedimentary basins, their absolute values and magnitude of CIEs vary spatially, especially over time intervals characterized by major deviations in global carbon cycling. Moreover, bulk carbonates in open‐marine environments are an ensemble of different components, each with a distinct isotope composition. Consequently, a comprehensive interpretation of the bulk‐δ13C record requires an understanding of co‐evolution of these components. In this study, we dissect sediments, from the late Paleocene‐early Eocene interval, at ODP Site 1209 (Shatsky Rise, Pacific Ocean) to investigate how a temporally varying bulk carbonate ensemble influences the overall carbon isotope record. A set of 45 samples were examined for δ13C and δ18O compositions, as bulk and individual size fractions. We find a significant increase in coarse‐fraction abundance across the PETM, driven by a changing community structure of calcifiers, modulating the size of the CIE at Site 1209 and thus making it distinct from those recorded at other open‐marine sites. These results highlight the importance of biogeography in the marine stable isotope record, especially when isotope excursions are driven by climate‐ and/or carbon cycle changes. In addition, community composition changes will alter the interpretation of weight percent coarse fraction as proxy for carbonate dissolution.
The Paleocene‐Eocene Thermal Maximum (PETM; 56 Ma) is considered to be one of the best analogs for future climate change. The carbon isotope composition (δ13C) of
- Award ID(s):
- 2002370
- PAR ID:
- 10386993
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Paleoceanography and Paleoclimatology
- Volume:
- 36
- Issue:
- 4
- ISSN:
- 2572-4517
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Climate conditions and instantaneous depositional events can influence the relative contribution of sediments from terrestrial and marine environments and ultimately the quantity and composition of carbon buried in the sediment record. Here, we analyze the elemental, isotopic, and organic geochemical composition of marine sediments to identify terrestrial and marine sources in sediment horizons associated with droughts, turbidites, and floods in the Santa Barbara Basin (SBB), California, during the last 2,000 years. Stable isotopes (δ13C and δ15N) indicate that more terrestrial organic carbon (OC) was deposited during floods relative to background sediment, while bulk C to nitrogen (C/N) ratios remained relatively constant (~10). Long‐chain
n ‐alkanes (C27, C29, C31, and C33), characteristic of terrestrial OC, dominated all types of sediment deposition but were 4 times more abundant in flood layers. Marine algae (C15, C17, and C19) and macrophytes (C21and C23) were also 2 times higher in flood versus background sediments. Turbidites contained twice the terrestrialn ‐alkanes relative to background sediment. Conversely, drought intervals were only distinguishable from background sediment by their higher proportion of marine algaln ‐alkanes. Combined, our data indicate that 15% of the total OC buried in SBB over the past 2,000 years was deposited during 11 flood events where the sediment was mostly terrestrially derived, and another 12% of deep sediment OC burial was derived from shelf remobilization during six turbidite events. Relative to twentieth century river runoff, our data suggest that floods result in considerable terrestrial OC burial on the continental margins of California. -
ABSTRACT We conducted compound‐specific stable hydrogen (δD) and carbon (δ13C) isotope analysis on
n ‐alkanes from terrestrial leaf waxes preserved in a 10 000‐year sediment profile from Lago de las Morrenas 1 (9.4925° N, 83.4848° W, 3480 m), a glacial lake on the Chirripó massif of the Cordillera de Talamanca in Costa Rica. Our results demonstrate millennial‐scale variations in hydroclimate across the Holocene, with drier than average conditions in the highlands during the early Holocene, but with gradually increasing precipitation; mesic conditions during the middle Holocene with a gradual drying trend; and highly variable conditions during the late Holocene. This general pattern is punctuated by several centennial‐scale manifestations of global climate events, including dry conditions during the 8200, 5200 and 4200 cal abp events and the Terminal Classic Drought (1200–850 cal abp ). Our δ13C analyses demonstrate that carbon isotope signals are responding to changes in hydroclimate at the site and reinforce prior interpretations of a stable páramo plant community that established following deglaciation and persisted throughout the Holocene. The shifts in hydroclimate inferred from analyses ofn ‐alkanes in Lago de las Morrenas 1 sediments show correspondence with charcoal records in multiple lakes, with fires most common during drier intervals. -
Abstract Sedimentary plant wax
δ 2H values are common proxies for hydrology, a poorly constrained variable in the Arctic. However, it can be difficult to distinguish plant waxes derived from aquatic versus terrestrial plants, causing uncertainty in climate interpretations. We test the hypothesis that Arctic lake sediment mid‐ and long‐chain plant waxes derive from aquatic and terrestrial plants, respectively. We comparen ‐alkanoic acid andn ‐alkane chain‐length distributions andn ‐alkanoic acidδ 2H andδ 13C values of the 29 most abundant modern plant taxa to those for soils, water filtrates, and lake sediments in the Qaupat Lake (QPT) catchment, Nunavut, Canada. Chain length distributions are variable among terrestrial plants, but similar and dominated by mid‐chain waxes among submerged/floating aquatic plants. Sedimentary wax distributions are similar to those in submerged/floating aquatic plants and toSalix spp., which are among the most abundant terrestrial plants in the QPT catchment. Mid‐chainn‐ alkanoic acidδ 2H values are similar in sediments and submerged/floating aquatic plants, but 50‰ lower thanSalix spp. In contrast, sedimentary long‐chainn ‐alkanoic acidδ 2H values fall between those for submerged/floating aquatic plants andSalix spp. We therefore infer that mid‐chain waxes in QPT are primarily from aquatic plants, whereas long‐chain waxes are from a mix of terrestrial and aquatic plants. In Arctic lakes like QPT, terrestrial wax transport via leaf litter and surface flow is limited by low‐lying topography and sparse vegetation. If these lakes also have abundant aquatic plants growing near the sediment‐water interface, the aquatic plants can contribute large portions of sedimentary waxes. -
Abstract Analysis of stable carbon and nitrogen isotope values (δ13C and δ15N) of animal tissues can provide important information about diet, physiology, and movements. Interpretation of δ13C and δ15N values, however, is influenced by factors such as sample lipid content, tissue-specific isotope discrimination, and tissue turnover rates, which are typically species- and tissue-specific. In this study, we generated lipid normalization models for δ13C and investigated the effects of chemical lipid extractions on δ13C and δ15N in Pacific walrus (
Odobenus rosmarus divergens ) muscle, liver, and skin. We also evaluated tissue-specific isotope discrimination in walrus muscle, liver, skin, and bone collagen. Mean δ13Clipid-freeof skin and bone collagen were similar, as were mean δ15N of muscle and liver. All other tissues differed significantly for both isotopes. Differences in δ13Clipid-freeand δ15N among tissues agreed with published estimates of marine mammal tissue-specific isotope discrimination factors, with the exception of skin. The results of this work will allow researchers to gain a clearer understanding of walrus diet and the structure of Arctic food webs, while also making it possible to directly compare the results of contemporary walrus isotope research with those of historic and paleoecological studies.