Blockchain and distributed ledger technologies (DLT) are emerging decentralized infrastructures touted by researchers to improve existing systems that have been limited by centralized governance and proprietary control. These technologies have shown continued success in sustaining the operational models of modern cryptocurrencies and decentralized finance applications (DeFi). These applications has incentivized growing discussions in their potential applications and adoption in other sectors such as healthcare, which has a high demand for data liquidity and interoperability. Despite the increasing research efforts in adopting blockchain and DLT in healthcare with conceptual designs and prototypes, a major research gap exists in literature: there is a lack of design recommendations that discuss concrete architectural styles and domain-specific considerations that are necessary for implementing health data exchange systems based on these technologies. This paper aims to address this gap in research by introducing a collection of design patterns for constructing blockchain and DLT-based healthcare systems that support secure and scalable data sharing. Our approach adapts traditional software patterns and proposes novel patterns that take into account both the technical requirements specific to healthcare systems and the implications of these requirements on naive blockchain-based solutions.
more »
« less
Machine learning in/for blockchain: Future and challenges
Machine learning and blockchain are two of the most notable technologies of recent years. The first is the foundation of artificial intelligence and big data analysis, and the second has significantly disrupted the financial industry. Both technologies are data‐driven, and thus there are rapidly growing interests in integrating both for more secure and efficient data sharing and analysis. In this article, we review existing research on combining machine learning and blockchain technologies and demonstrate that they can collaborate efficiently and effectively. In the end, we point out some future directions and expect more research on deeper integration of these two promising technologies.
more »
« less
- Award ID(s):
- 1821183
- PAR ID:
- 10447999
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Canadian Journal of Statistics
- Volume:
- 49
- Issue:
- 4
- ISSN:
- 0319-5724
- Page Range / eLocation ID:
- p. 1364-1382
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Artificial intelligence (AI) is shifting the paradigm of two-phase heat transfer research. Recent innovations in AI and machine learning uniquely offer the potential for collecting new types of physically meaningful features that have not been addressed in the past, for making their insights available to other domains, and for solving for physical quantities based on first principles for phase-change thermofluidic systems. This review outlines core ideas of current AI technologies connected to thermal energy science to illustrate how they can be used to push the limit of our knowledge boundaries about boiling and condensation phenomena. AI technologies for meta-analysis, data extraction, and data stream analysis are described with their potential challenges, opportunities, and alternative approaches. Finally, we offer outlooks and perspectives regarding physics-centered machine learning, sustainable cyberinfrastructures, and multidisciplinary efforts that will help foster the growing trend of AI for phase-change heat and mass transfer.more » « less
-
Blockchain has emerged as a solution for ensuring accurate and truthful environmental variable monitoring needed for the management of pollutants and natural resources. The immutability property of blockchain helps protect the measured data on pollution and natural resources to enable truthful reporting and effective management and control of polluting agents. However, specifics on what to measure, how to use blockchain, and highlighting which blockchain frameworks have been adopted need to be explored to fill the research gaps. Therefore, we review existing works on the use of blockchain for monitoring and managing environmental variables in this paper. Specifically, we examine existing blockchain applications on greenhouse gas emissions, solid and plastic waste, food waste, food security, water usage, and the circular economy and identify what motivates the adoption of blockchain, features sought, used blockchain frameworks and consensus algorithms, and the adopted supporting technologies to complement data sensing and reporting. We conclude the review by identifying practical works that provide implementation details for rapid adoption and remaining challenges that merit future research.more » « less
-
This article presents a novel hardware-assisted distributed ledger-based solution for simultaneous device and data security in smart healthcare. This article presents a novel architecture that integrates PUF, blockchain, and Tangle for Security-by-Design (SbD) of healthcare cyber–physical systems (H-CPSs). Healthcare systems around the world have undergone massive technological transformation and have seen growing adoption with the advancement of Internet-of-Medical Things (IoMT). The technological transformation of healthcare systems to telemedicine, e-health, connected health, and remote health is being made possible with the sophisticated integration of IoMT with machine learning, big data, artificial intelligence (AI), and other technologies. As healthcare systems are becoming more accessible and advanced, security and privacy have become pivotal for the smooth integration and functioning of various systems in H-CPSs. In this work, we present a novel approach that integrates PUF with IOTA Tangle and blockchain and works by storing the PUF keys of a patient’s Body Area Network (BAN) inside blockchain to access, store, and share globally. Each patient has a network of smart wearables and a gateway to obtain the physiological sensor data securely. To facilitate communication among various stakeholders in healthcare systems, IOTA Tangle’s Masked Authentication Messaging (MAM) communication protocol has been used, which securely enables patients to communicate, share, and store data on Tangle. The MAM channel works in the restricted mode in the proposed architecture, which can be accessed using the patient’s gateway PUF key. Furthermore, the successful verification of PUF enables patients to securely send and share physiological sensor data from various wearable and implantable medical devices embedded with PUF. Finally, healthcare system entities like physicians, hospital admin networks, and remote monitoring systems can securely establish communication with patients using MAM and retrieve the patient’s BAN PUF keys from the blockchain securely. Our experimental analysis shows that the proposed approach successfully integrates three security primitives, PUF, blockchain, and Tangle, providing decentralized access control and security in H-CPS with minimal energy requirements, data storage, and response time.more » « less
-
Natural disasters pose significant threats to human life and property, exacerbated by their sudden onset and increasing frequency. This paper conducts a comprehensive bibliometric review to explore robust methodologies for post-disaster building damage assessment and reconnaissance, focusing on the integration of advanced data collection technologies and computational techniques. The objectives of this study were to assess the current landscape of methodologies, highlight technological advancements, and identify significant trends and gaps in the literature. Using a structured approach for data collection, this review analyzed 370 journal articles from the Scopus database from 2014 to 2024, emphasizing recent developments in remote sensing, including satellite and UAV technologies, and the application of machine learning and deep learning for damage detection and analysis. Our findings reveal substantial advancements in data collection and analysis techniques, underscoring the critical role of machine learning and remote sensing in enhancing disaster damage assessments. The results are significant as they highlight areas requiring further research and development, particularly in data fusion techniques, real-time processing capabilities, model generalization, UAV technology enhancements, and training for the rescue team. These areas are crucial for improving disaster management practices and enhancing community resilience. The application of our research is particularly relevant in developing more effective emergency response strategies and in informing policy-making for disaster-prepared social infrastructure planning. Future research should focus on closing the identified gaps and leveraging cutting-edge technologies to advance the field of disaster management.more » « less
An official website of the United States government
