Abstract Water consumed by power plants is transferred virtually from producers to consumers on the electric grid. This network of virtual transfers varies spatially and temporally on a sub-annual scale. In this study, we focused on cooling water consumed by thermoelectric power plants and water evaporated from hydropower reservoirs. We analyzed blue and grey virtual water flows between balancing authorities in the United States electric grid from 2016 to 2021. Transfers were calculated using thermoelectric water consumption volumes reported in Form EIA-923, power plant data from Form EIA-860, water consumption factors from literature, and electricity transfer data from Form EIA-930. The results indicate that virtual water transfers follow seasonal trends. Virtual blue water transfers are dominated by evaporation from hydropower reservoirs in high evaporation regions and peak around November. Virtual grey watertransfers reach a maximum peak during the summer months and a smaller peak during the winter. Notable virtual blue water transfers occur between Arizona and California as well as surrounding regions in the Southwest. Virtual grey water transfers are greatest in the Eastern United States where older, once-through cooling systems are still in operation. Understanding the spatial and temporal transfer of water resources has important policy, water management, and equity implications for understanding burden shifts between regions.
more »
« less
Managing Financial Risk Trade‐Offs for Hydropower Generation Using Snowpack‐Based Index Contracts
Abstract Hydrologic variability poses an important source of financial risk for hydropower‐reliant electric utilities, particularly in snow‐dominated regions. Drought‐related reductions in hydropower production can lead to decreased electricity sales or increased procurement costs to meet firm contractual obligations. This research contributes a methodology for characterizing the trade‐offs between cash flows and debt burden for alternative financial risk management portfolios, and applies it to a hydropower producer in the Sierra Nevada mountains (San Francisco Public Utilities Commission). A newly designed financial contract, based on a snow water equivalent depth (SWE) index, provides payouts to hydropower producers in dry years in return for the producers making payments in wet years. This contract, called a capped contract for differences (CFD), is found to significantly reduce cash flow volatility and is considered within a broader risk management portfolio that also includes reserve funds and debt issuance. Our results show that solutions relying primarily on a reserve fund can manage risk at low cost but may require a utility to take on significant debt during severe droughts. More risk‐averse utilities with less access to debt should combine a reserve fund with the proposed CFD instrument in order to better manage the financial losses associated with extreme droughts. Our results show that the optimal risk management strategies and resulting outcomes are strongly influenced by the utility's fixed cost burden and by CFD pricing, while interest rates are found to be less important. These results are broadly transferable to hydropower systems in snow‐dominated regions facing significant revenue volatility.
more »
« less
- Award ID(s):
- 1639268
- PAR ID:
- 10448002
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Water Resources Research
- Volume:
- 56
- Issue:
- 10
- ISSN:
- 0043-1397
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Droughts reduce hydropower production and heatwaves increase electricity demand, forcing power system operators to rely more on fossil fuel power plants. However, less is known about how droughts and heat waves impact the county level distribution of health damages from power plant emissions. Using California as a case study, we simulate emissions from power plants under a 500-year synthetic weather ensemble. We find that human health damages are highest in hot, dry years. Counties with a majority of people of color and counties with high pollution burden (which are somewhat overlapping) are disproportionately impacted by increased emissions from power plants during droughts and heat waves. Taxing power plant operations based on each plant’s contribution to health damages significantly reduces average exposure. However, emissions taxes do not reduce air pollution damages on the worst polluting days, because supply scarcity (caused by severe heat waves) forces system operators to use every power plant available to avoid causing a blackout.more » « less
-
Snow plays a fundamental role in global water resources, climate, and biogeochemical processes; however, no global snow drought assessments currently exist. Changes in the duration and intensity of droughts can significantly impact ecosystems, food and water security, agriculture, hydropower, and the socioeconomics of a region. We characterize the duration and intensity of snow droughts (snow water equivalent deficits) worldwide and differences in their distributions over 1980 to 2018. We find that snow droughts became more prevalent, intensified, and lengthened across the western United States (WUS). Eastern Russia, Europe, and the WUS emerged as hot spots for snow droughts, experiencing ∼2, 16, and 28% longer snow drought durations, respectively, in the latter half of 1980 to 2018. In this second half of the record, these regions exhibited a higher probability (relative to the first half of the record) of having a snow drought exceed the average intensity from the first period by 3, 4, and 15%. The Hindu Kush and Central Asia, extratropical Andes, greater Himalayas, and Patagonia, however, experienced decreases (percent changes) in the average snow drought duration (−4, −7, −8, and −16%, respectively). Although we do not attempt to separate natural and human influences with a detailed attribution analysis, we discuss some relevant physical processes (e.g., Arctic amplification and polar vortex movement) that likely contribute to observed changes in snow drought characteristics. We also demonstrate how our framework can facilitate drought monitoring and assessment by examining two snow deficits that posed large socioeconomic challenges in the WUS (2014/2015) and Afghanistan (2017/2018).more » « less
-
ABSTRACT Dryland organisms exhibit varied responses to changes in precipitation, including event size, frequency, and soil moisture duration, influencing carbon uptake and reserve management strategies. This principle, central to the pulse‐reserve paradigm, has not been thoroughly evaluated in biological soil crusts (biocrusts), essential primary producers on dryland surfaces. We conducted two experiments to investigate carbon uptake in biocrusts under different precipitation regimes. In the first, we applied a gradient of watering amounts to biocrusts dominated by moss or cyanobacteria, hypothesising distinct pulse‐response strategies. The second experiment extended watering treatments over three months, varying pulse size and frequency. Our results revealed distinct carbon uptake patterns: moss crusts exhibited increased CO2uptake with larger, less frequent watering events, whereas cyanobacteria crusts maintained similar carbon uptake across all event sizes. These findings suggest divergent pulse‐response strategies across biocrust types, with implications for modelling dryland carbon dynamics and informing land management under changing precipitation regimes.more » « less
-
We use discounted cash flow analysis to measure the projected fiscal capacity of the US federal government. We apply our valuation method to the Congressional Budget Office (CBO) projections for the US federal government’s primary deficits between 2022 and 2052 and projected debt outstanding in 2052. The discount rate for projected cash flows and future debt must include a GDP or market risk premium in recognition of the risk associated with future surpluses. Despite current low interest rates, we find that US fiscal capacity is more limited than commonly thought. Because of the back-loading of projected primary surpluses, the duration of the surplus claim far exceeds the duration of the outstanding Treasury portfolio. This duration mismatch exposes the government to the risk of rising interest rates, which would trigger the need for higher tax revenue or lower spending. Reducing this risk by front-loading primary surpluses requires a major fiscal adjustment.more » « less
An official website of the United States government
