skip to main content


Title: Ice Cover Influences Redox Dynamics in Prairie Pothole Wetland Sediments
Abstract

Sediment cores were collected under ice‐cover in late winter from three wetlands located along a subsurface hydrologic gradient within the Prairie Pothole Region of North America. Within each core, sediment porewaters were analyzed byin situvoltammetry for a suite of redox active species as a function of depth and revealed shifts in complex oxidation‐reduction dynamics related to ice cover in these wetlands. We observed a reduced sulfur boundary that is close to or above the sediment‐water interface (SWI) under ice cover. In contrast, the reduced sulfur boundary retreats several centimeters deeper in the sediments under ice‐free conditions. These findings are analogous to previous observations in shallow lakes that show anoxia at the SWI during ice cover but not under ice‐free conditions. Further, biogeochemical processes varied depending upon wetland type. During winter, sulfide levels in sediment porewaters in groundwater fed “flow‐through” wetlands were significantly lower than under ice‐free conditions. The converse applied to groundwater discharge wetlands where reduced sulfur concentrations in porewaters increased under ice cover. Decreases in ice cover extent and duration due to climate change coupled with profound landscape changes due to agriculture will affect the biogeochemical cycles of these wetlands and could lead to increased carbon emissions in the future.

 
more » « less
PAR ID:
10448014
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
126
Issue:
10
ISSN:
2169-8953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Blanchard, Jeffrey Lawrence (Ed.)
    ABSTRACT <p>Winter is a relatively under-studied season in freshwater ecology. The paucity of wintertime surveys has led to a lack of knowledge regarding microbial community activity during the winter in Lake Erie, a North American Great Lake. Viruses shape microbial communities and regulate biogeochemical cycles by acting as top-down controls, yet very few efforts have been made to examine active virus populations during the winter in Lake Erie. Furthermore, climate change-driven declines in seasonal ice cover have been shown to influence microbial community structure, but no studies have compared viral community activity between different ice cover conditions. We surveyed surface water metatranscriptomes for viral hallmark genes as a proxy for active virus populations and compared activity metrics between ice-covered and ice-free conditions from two sampled winters. Transcriptionally active viral communities were detected in both winters, spanning diverse phylogenetic clades of putative bacteriophage (<italic>Caudoviricetes</italic>), giant viruses (<italic>Nucleocytoviricota</italic>, or NCLDV), and RNA viruses (<italic>Orthornavirae</italic>). However, viral community activity metrics revealed pronounced differences between the ice-covered and ice-free winters. Viral community composition was distinct between winters and viral hallmark gene richness was reduced in the ice-covered relative to the ice-free conditions. In addition, the observed differences in viral communities correlated with microbial community activity metrics. Overall, these findings contribute to our understanding of the viral populations that are active during the winter in Lake Erie and suggest that viral community activity may be associated with ice cover extent.</p><sec><title>IMPORTANCE

    As seasonal ice cover is projected to become increasingly rare on large temperate lakes, there is a need to understand how microbial communities might respond to changing ice conditions. Although it is widely recognized that viruses impact microbial community structure and function, there is little known regarding wintertime viral activity or the relationship between viral activity and ice cover extent. Our metatranscriptomic analyses indicated that viruses were transcriptionally active in the winter surface waters of Lake Erie. These findings also expanded the known diversity of viral lineages in the Great Lakes. Notably, viral community activity metrics were significantly different between the two sampled winters. The pronounced differences we observed in active viral communities between the ice-covered and ice-free samples merit further research regarding how viral communities will function in future, potentially ice-free, freshwater systems.

     
    more » « less
  2. Sediments covering Arctic continental shelves are uniquely impacted by ice processes. Delivery of sediments is generally limited to the summer, when rivers are ice free, permafrost bluffs are thawing, and sea ice is undergoing its seasonal retreat. Once delivered to the coastal zone, sediments follow complex pathways to their final depocenters—for example, fluvial sediments may experience enhanced seaward advection in the spring due to routing under nearshore sea ice; during the open-water season, boundary-layer transport may be altered by strong stratification in the ocean due to ice melt; during the fall storm season, sediments may be entrained into sea ice through the production of anchor ice and frazil; and in the winter, large ice keels more than 20 m tall plow the seafloor (sometimes to seabed depths of 1–2 m), creating a type of physical mixing that dwarfs the decimeter-scale mixing from bioturbation observed in lower-latitude shelf systems. This review summarizes the work done on subtidal sediment dynamics over the last 50 years in Arctic shelf systems backed by soft-sediment coastlines and suggests directions for future sediment studies in a changing Arctic. Reduced sea ice, increased wave energy, and increased sediment supply from bluffs (and possibly rivers) will likely alter marine sediment dynamics in the Arctic now and into the future.

     
    more » « less
  3. Climate change is causing pronounced shifts during winter in the US, including shortening the snow season, reducing snowpack, and altering the timing and volume of snowmelt-related runoff. These changes in winter precipitation patterns affect in-stream freeze-thaw cycles, including ice and snow cover, and can trigger direct and indirect effects on in-stream physical, chemical, and biological processes in ~60% of river basins in the Northern Hemisphere. We used high-resolution, multi-parameter data collected in a headwater stream and its local environment (climate and soil) to determine interannual variability in physical, chemical, and biological signals in a montane stream during the winter of an El Niño and a La Niña year. We observed ~77% greater snow accumulation during the El Niño year, which caused the formation of an ice dam that shifted the system from a primarily lotic to a lentic environment. Water chemistry and stream metabolism parameters varied widely between years. They featured anoxic conditions lasting over a month, with no observable gross primary production (GPP) occurring under the ice and snow cover in the El Niño year. In contrast, dissolved oxygen and GPP remained relatively high during the winter months of the La Niña year. These redox and metabolic changes driven by changes in winter precipitation have significant implications for water chemistry and biological functioning beyond the winter. Our study suggests that as snow accumulation and hydrologic conditions shift during the winter due to climate change, hot-spots and hot-moments for biogeochemical processing may be reduced, with implications for the downstream movement of nutrients and transported materials. 
    more » « less
  4. Abstract

    Under‐ice photoautotrophs in lakes are generally considered to be limited by light rather than nutrients. Despite reduced light intensity under the ice, there is increasing evidence that suggests some lakes support high levels of photoautotrophs. We explored how snow cover (i.e., light) and nutrients (i.e., nitrogen and phosphorus) influence ice‐associated photoautotroph growth in a Minnesota, USA lake. Using a novel under‐ice approach, we deployed nutrient diffusing substrates (single or combined nutrient amendments) under two different light scenarios (snow covered, reduced light; snow removed, increased light) near the water‐ice interface to mimic a range of conditions ice‐associated photoautotrophs may be exposed to. Natural snow cover reduced light compared with snow removal, particularly early in the experiment before snow began to melt. When comparing photoautotroph chlorophylla(Chla) between snow treatments, we found a significant snow effect with higher concentrations in the snow removed treatment. We also found a significant nutrient effect, for all nutrient treatments, on Chlaconcentrations in both snow conditions. The effect of any nutrient treatment on Chlaconcentrations was similar. Our results suggest that ice‐associated photoautotrophs were able to grow in all snow conditions, but snow removal resulted in higher growth and nutrient availability also mediated responses. Thus, both light and nutrient conditions in the winter may strongly affect ice‐associated photoautotroph dynamics.

     
    more » « less
  5. Abstract

    Estuarine total alkalinity (TA), which buffers against acidification, is temporally and spatially variable and regulated by complex, interacting hydrologic and biogeochemical processes. During periods of net evaporation (drought), the Mission-Aransas Estuary (MAE) of the northwestern Gulf of Mexico experienced TA losses beyond what can be attributed to calcification. The contribution of sedimentary oxidation of reduced sulfur to the TA loss was examined in this study. Water column samples were collected from five stations within MAE and analyzed for salinity, TA, and calcium ion concentrations. Sediment samples from four of these monitoring stations and one additional station within MAE were collected and incubated between 2018 and 2021. TA, calcium, magnesium, and sulfate ion concentrations were analyzed for these incubations. Production of sulfate along with TA consumption (or production) beyond what can be attributed to calcification (or carbonate dissolution) was observed. These results suggest that oxidation of reduced sulfur consumed TA in MAE during droughts. We estimate that the upper limit of TA consumption due to reduced sulfur oxidation can be as much as 4.60 × 108 mol day−1in MAE. This biogeochemical TA sink may be present in other similar subtropical, freshwater-starved estuaries around the world.

     
    more » « less