skip to main content


Title: Ice Cover Influences Redox Dynamics in Prairie Pothole Wetland Sediments
Abstract

Sediment cores were collected under ice‐cover in late winter from three wetlands located along a subsurface hydrologic gradient within the Prairie Pothole Region of North America. Within each core, sediment porewaters were analyzed byin situvoltammetry for a suite of redox active species as a function of depth and revealed shifts in complex oxidation‐reduction dynamics related to ice cover in these wetlands. We observed a reduced sulfur boundary that is close to or above the sediment‐water interface (SWI) under ice cover. In contrast, the reduced sulfur boundary retreats several centimeters deeper in the sediments under ice‐free conditions. These findings are analogous to previous observations in shallow lakes that show anoxia at the SWI during ice cover but not under ice‐free conditions. Further, biogeochemical processes varied depending upon wetland type. During winter, sulfide levels in sediment porewaters in groundwater fed “flow‐through” wetlands were significantly lower than under ice‐free conditions. The converse applied to groundwater discharge wetlands where reduced sulfur concentrations in porewaters increased under ice cover. Decreases in ice cover extent and duration due to climate change coupled with profound landscape changes due to agriculture will affect the biogeochemical cycles of these wetlands and could lead to increased carbon emissions in the future.

 
more » « less
NSF-PAR ID:
10448014
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
126
Issue:
10
ISSN:
2169-8953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Plant identity and cover in coastal wetlands is changing in worldwide, and many subtropical salt marshes dominated by low‐stature herbaceous species are becoming woody mangroves. Yet, how changes affect coastal soil biogeochemical processes and belowground biomass before and after storms is uncertain. We experimentally manipulated the percent mangrove cover (Avicennia germinans) in 3 × 3 m cells embedded in 10 plots (24 × 42 m) comprising a gradient of marsh (e.g.,Spartina alterniflora,Batis maritima) and mangrove cover in Texas, USA. Hurricane Harvey made direct landfall over our site on 25 August 2017, providing a unique opportunity to test how plant composition mitigates hurricane effects on surface sediment accretion, soil chemistry (carbon, C; nitrogen, N; phosphorus, P; and sulfur, S), and root biomass. Data were collected before (2013 and 2016), one‐month after (2017), and one‐year after (2018) Hurricane Harvey crossed the area, allowing us to measure stocks before and after the hurricane. The accretion depth was higher in fringe compared with interior cells of plots, more variable in cells dominated by marsh than mangrove, and declined with increasing plot‐scale mangrove cover. The concentrations of P and δ34S in storm‐driven accreted surface sediments, and the concentrations of N, P, S, and δ34S in underlying soils (0–30 cm), decreased post‐hurricane, whereas the C concentrations in both compartments were unchanged. Root biomass in both marsh and mangrove cells was reduced by 80% in 2017 compared with previous dates and remained reduced in 2018. Post‐hurricane loss of root biomass in plots correlated with enhanced nutrient limitation. Total sulfide accumulation as indicated by δ34S, increased nutrient limitation, and decreased root biomass of both marshes and mangroves after hurricanes may affect ecosystem function and increase vulnerability in coastal wetlands to subsequent disturbances. Understanding how changes in plant composition in coastal ecosystems affects responses to hurricane disturbances is needed to assess coastal vulnerability.

     
    more » « less
  2. Abstract

    For a large part of earth's history, cyanobacterial mats thrived in low‐oxygen conditions, yet our understanding of their ecological functioning is limited. Extant cyanobacterial mats provide windows into the putative functioning of ancient ecosystems, and they continue to mediate biogeochemical transformations and nutrient transport across the sediment–water interface in modern ecosystems. The structure and function of benthic mats are shaped by biogeochemical processes in underlying sediments. A modern cyanobacterial mat system in a submerged sinkhole of Lake Huron (LH) provides a unique opportunity to explore such sediment–mat interactions. In the Middle Island Sinkhole (MIS), seeping groundwater establishes a low‐oxygen, sulfidic environment in which a microbial mat dominated byPhormidiumandPlanktothrixthat is capable of both anoxygenic and oxygenic photosynthesis, as well as chemosynthesis, thrives. We explored the coupled microbial community composition and biogeochemical functioning of organic‐rich, sulfidic sediments underlying the surface mat. Microbial communities were diverse and vertically stratified to 12 cm sediment depth. In contrast to previous studies, which used low‐throughput or shotgun metagenomic approaches, our high‐throughput 16SrRNAgene sequencing approach revealed extensive diversity. This diversity was present within microbial groups, including putative sulfate‐reducing taxa ofDeltaproteobacteria, some of which exhibited differential abundance patterns in the mats and with depth in the underlying sediments. The biological and geochemical conditions in theMISwere distinctly different from those in typicalLHsediments of comparable depth. We found evidence for active cycling of sulfur, methane, and nutrients leading to high concentrations of sulfide, ammonium, and phosphorus in sediments underlying cyanobacterial mats. Indicators of nutrient availability were significantly related toMISmicrobial community composition, whileLHcommunities were also shaped by indicators of subsurface groundwater influence. These results show that interactions between the mats and sediments are crucial for sustaining this hot spot of biological diversity and biogeochemical cycling.

     
    more » « less
  3. Abstract

    Wildfire is a natural component of sagebrush (Artemisiaspp.) steppe rangelands that induces temporal shifts in plant community physiognomy, ground surface conditions, and erosion rates. Fire alteration of the vegetation structure and ground cover in these ecosystems commonly amplifies soil losses by wind‐ and water‐driven erosion. Much of the fire‐related erosion research for sagebrush steppe has focused on either erosion by wind over gentle terrain or water‐driven erosion under high‐intensity rainfall on complex topography. However, many sagebrush rangelands are geographically positioned in snow‐dominated uplands with complex terrain in which runoff and sediment delivery occur primarily in winter months associated with cold‐season hydrology. Current understanding is limited regarding fire effects on the interaction of wind‐ and cold‐season hydrologic‐driven erosion processes for these ecosystems. In this study, we evaluated fire impacts on vegetation, ground cover, soils, and erosion across spatial scales at a snow‐dominated mountainous sagebrush site over a 2‐year period post‐fire. Vegetation, ground cover, and soil conditions were assessed at various plot scales (8 m2to 3.42 ha) through standard field measures. Erosion was quantified through a network of silt fences (n= 24) spanning hillslope and side channel or swale areas, ranging from 0.003 to 3.42 ha in size. Sediment delivery at the watershed scale (129 ha) was assessed by suspended sediment samples of streamflow through a drop‐box v‐notch weir. Wildfire consumed nearly all above‐ground live vegetation at the site and resulted in more than 60% bare ground (bare soil, ash, and rock) in the immediate post‐fire period. Widespread wind‐driven sediment loading of swales was observed over the first month post‐fire and extensive snow drifts were formed in these swales each winter season during the study. In the first year, sediment yields from north‐ and south‐facing aspects averaged 0.99–8.62 t ha−1at the short‐hillslope scale (~0.004 ha), 0.02–1.65 t ha−1at the long‐hillslope scale (0.02–0.46 ha), and 0.24–0.71 t ha−1at the swale scale (0.65–3.42 ha), and watershed scale sediment yield was 2.47 t ha−1. By the second year post fire, foliar cover exceeded 120% across the site, but bare ground remained more than 60%. Sediment yield in the second year was greatly reduced across short‐ to long‐hillslope scales (0.02–0.04 t ha−1), but was similar to first‐year measures for swale plots (0.24–0.61 t ha−1) and at the watershed scale (3.05 t ha−1). Nearly all the sediment collected across all spatial scales was delivered during runoff events associated with cold‐season hydrologic processes, including rain‐on‐snow, rain‐on‐frozen soils, and snowmelt runoff. Approximately 85–99% of annual sediment collected across all silt fence plots each year was from swales. The high levels of sediment delivered across hillslope to watershed scales in this study are attributed to observed preferential loading of fine sediments into swale channels by aeolian processes in the immediate post‐fire period and subsequent flushing of these sediments by runoff from cold‐season hydrologic processes. Our results suggest that the interaction of aeolian and cold‐season hydrologic‐driven erosion processes is an important component for consideration in post‐fire erosion assessment and prediction and can have profound implications for soil loss from these ecosystems. © 2019 John Wiley & Sons, Ltd.

     
    more » « less
  4. Abstract

    Under‐ice photoautotrophs in lakes are generally considered to be limited by light rather than nutrients. Despite reduced light intensity under the ice, there is increasing evidence that suggests some lakes support high levels of photoautotrophs. We explored how snow cover (i.e., light) and nutrients (i.e., nitrogen and phosphorus) influence ice‐associated photoautotroph growth in a Minnesota, USA lake. Using a novel under‐ice approach, we deployed nutrient diffusing substrates (single or combined nutrient amendments) under two different light scenarios (snow covered, reduced light; snow removed, increased light) near the water‐ice interface to mimic a range of conditions ice‐associated photoautotrophs may be exposed to. Natural snow cover reduced light compared with snow removal, particularly early in the experiment before snow began to melt. When comparing photoautotroph chlorophylla(Chla) between snow treatments, we found a significant snow effect with higher concentrations in the snow removed treatment. We also found a significant nutrient effect, for all nutrient treatments, on Chlaconcentrations in both snow conditions. The effect of any nutrient treatment on Chlaconcentrations was similar. Our results suggest that ice‐associated photoautotrophs were able to grow in all snow conditions, but snow removal resulted in higher growth and nutrient availability also mediated responses. Thus, both light and nutrient conditions in the winter may strongly affect ice‐associated photoautotroph dynamics.

     
    more » « less
  5. Abstract

    Inland waters are increasingly recognized as critical sites of methane emissions to the atmosphere, but the biogeochemical reactions driving such fluxes are less well understood. The Prairie Pothole Region (PPR) of North America is one of the largest wetland complexes in the world, containing millions of small, shallow wetlands. The sediment pore waters ofPPRwetlands contain some of the highest concentrations of dissolved organic carbon (DOC) and sulfur species ever recorded in terrestrial aquatic environments. Using a suite of geochemical and microbiological analyses, we measured the impact of sedimentary carbon and sulfur transformations in these wetlands on methane fluxes to the atmosphere. This research represents the first study of coupled geochemistry and microbiology within thePPRand demonstrates how the conversion of abundant labileDOCpools into methane results in some of the highest fluxes of this greenhouse gas to the atmosphere ever reported. AbundantDOCand sulfate additionally supported some of the highest sulfate reduction rates ever measured in terrestrial aquatic environments, which we infer to account for a large fraction of carbon mineralization in this system. Methane accumulations in zones of active sulfate reduction may be due to either the transport of free methane gas from deeper locations or the co‐occurrence of methanogenesis and sulfate reduction. If both respiratory processes are concurrent, any competitive inhibition of methanogenesis by sulfate‐reducing bacteria may be lessened by the presence of large labileDOCpools that yield noncompetitive substrates such as methanol. Our results reveal some of the underlying mechanisms that makePPRwetlands biogeochemical hotspots, which ultimately leads to their critical, but poorly recognized role in regional greenhouse gas emissions.

     
    more » « less