skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: New Metrics for Assessing the State Performance in Combating the COVID‐19 Pandemic
Abstract Previous research has noted that many factors greatly influence the spread of COVID‐19. Contrary to explicit factors that are measurable, such as population density, number of medical staff, and the daily test rate, many factors are not directly observable, for instance, culture differences and attitudes toward the disease, which may introduce unobserved heterogeneity. Most contemporary COVID‐19 related research has focused on modeling the relationship between explicitly measurable factors and the response variable of interest (such as the infection rate or the death rate). The infection rate is a commonly used metric for evaluating disease progression and a state's mitigation efforts. Because unobservable sources of heterogeneity cannot be measured directly, it is hard to incorporate them into the quantitative assessment and decision‐making process. In this study, we propose new metrics to study a state's performance by adjusting the measurable county‐level covariates and unobservable state‐level heterogeneity through random effects. A hierarchical linear model (HLM) is postulated, and we calculate two model‐based metrics—the standardized infection ratio (SDIR) and the adjusted infection rate (AIR). This analysis highlights certain time periods when the infection rate for a state was high while their SDIR was low and vice versa. We show that trends in these metrics can give insight into certain aspects of a state's performance. As each state continues to develop their individualized COVID‐19 mitigation strategy and ultimately works to improve their performance, the SDIR and AIR may help supplement the crude infection rate metric to provide a more thorough understanding of a state's performance.  more » « less
Award ID(s):
2027521 1841520 1835507 2138914
PAR ID:
10448018
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
GeoHealth
Volume:
5
Issue:
9
ISSN:
2471-1403
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) the causal agent for COVID-19, is a communicable disease spread through close contact. It is known to disproportionately impact certain communities due to both biological susceptibility and inequitable exposure. In this study, we investigate the most important health, social, and environmental factors impacting the early phases (before July, 2020) of per capita COVID-19 transmission and per capita all-cause mortality in US counties. We aggregate county-level physical and mental health, environmental pollution, access to health care, demographic characteristics, vulnerable population scores, and other epidemiological data to create a large feature set to analyze per capita COVID-19 outcomes. Because of the high-dimensionality, multicollinearity, and unknown interactions of the data, we use ensemble machine learning and marginal prediction methods to identify the most salient factors associated with several COVID-19 outbreak measure. Our variable importance results show that measures of ethnicity, public transportation and preventable diseases are the strongest predictors for both per capita COVID-19 incidence and mortality. Specifically, the CDC measures for minority populations, CDC measures for limited English, and proportion of Black- and/or African-American individuals in a county were the most important features for per capita COVID-19 cases within a month after the pandemic started in a county and also at the latest date examined. For per capita all-cause mortality at day 100 and total to date, we find that public transportation use and proportion of Black- and/or African-American individuals in a county are the strongest predictors. The methods predict that, keeping all other factors fixed, a 10% increase in public transportation use, all other factors remaining fixed at the observed values, is associated with increases mortality at day 100 of 2012 individuals (95% CI [1972, 2356]) and likewise a 10% increase in the proportion of Black- and/or African-American individuals in a county is associated with increases total deaths at end of study of 2067 (95% CI [1189, 2654]). Using data until the end of study, the same metric suggests ethnicity has double the association as the next most important factors, which are location, disease prevalence, and transit factors. Our findings shed light on societal patterns that have been reported and experienced in the U.S. by using robust methods to understand the features most responsible for transmission and sectors of society most vulnerable to infection and mortality. In particular, our results provide evidence of the disproportionate impact of the COVID-19 pandemic on minority populations. Our results suggest that mitigation measures, including how vaccines are distributed, could have the greatest impact if they are given with priority to the highest risk communities. 
    more » « less
  2. There is growing concern that racial and ethnic minority communities around the United States are experiencing a disproportionate burden of infection rate and mortality from the coronavirus disease 2019 (Covid-19). While most research, media newspapers, websites, and television networks are providing statistical numbers of daily infection and death rate across US by state, these numbers fail to study the actual impact of COVID-19 to each race. Our approach has taken the top five races by population count in the US and has calculated the impact index by race for each state for COVID-19 infections and death rate. We also examine the rise in the utilization of hospitals as a result of the rise in cases of COVID-19 in the United states. We conclude that the African American race and Hispanic race is disproportionately impacted more than the white population for infection rate. 
    more » « less
  3. The coronavirus disease 2019 (COVID-19) pandemic has created more devastation among dialysis patients than among the general population. Patient-level prediction models for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are crucial for the early identification of patients to prevent and mitigate outbreaks within dialysis clinics. As the COVID-19 pandemic evolves, it is unclear whether or not previously built prediction models are still sufficiently effective. We developed a machine learning (XGBoost) model to predict during the incubation period a SARS-CoV-2 infection that is subsequently diagnosed after 3 or more days. We used data from multiple sources, including demographic, clinical, treatment, laboratory, and vaccination information from a national network of hemodialysis clinics, socioeconomic information from the Census Bureau, and county-level COVID-19 infection and mortality information from state and local health agencies. We created prediction models and evaluated their performances on a rolling basis to investigate the evolution of prediction power and risk factors. From April 2020 to August 2020, our machine learning model achieved an area under the receiver operating characteristic curve (AUROC) of 0.75, an improvement of over 0.07 from a previously developed machine learning model published by Kidney360 in 2021. As the pandemic evolved, the prediction performance deteriorated and fluctuated more, with the lowest AUROC of 0.6 in December 2021 and January 2022. Over the whole study period, that is, from April 2020 to February 2022, fixing the false-positive rate at 20%, our model was able to detect 40% of the positive patients. We found that features derived from local infection information reported by the Centers for Disease Control and Prevention (CDC) were the most important predictors, and vaccination status was a useful predictor as well. Whether or not a patient lives in a nursing home was an effective predictor before vaccination, but became less predictive after vaccination. As found in our study, the dynamics of the prediction model are frequently changing as the pandemic evolves. County-level infection information and vaccination information are crucial for the success of early COVID-19 prediction models. Our results show that the proposed model can effectively identify SARS-CoV-2 infections during the incubation period. Prospective studies are warranted to explore the application of such prediction models in daily clinical practice. 
    more » « less
  4. Abstract Coronavirus Disease 2019 (COVID‐19) is spreading around the world, and the United States has become the epicenter of the global pandemic. However, little is known about the causes behind the large spatial variability of the COVID‐19 incidence. Here we use path analysis model to quantify the influence of four potential factors (urban vegetation, population density, air temperature, and baseline infection) in shaping the highly heterogeneous transmission patterns of COVID‐19 across the United States. Our results show that urban vegetation can slow down the spread of COVID‐19, and each 1% increase in the percentage of urban vegetation will lead to a 2.6% decrease in cumulative COVID‐19 cases. Additionally, the mediating role of urban vegetation suggests that urban vegetation could reduce increases in cumulative COVID‐19 cases induced by population density and baseline infection. Our findings highlight the importance of urban vegetation in strengthening urban resilience to public health emergencies. 
    more » « less
  5. This study addresses COVID-19 testing as a nonlinear sampling problem, aiming to uncover the dependence of the true infection count in the population on COVID-19 testing metrics such as testing volume and positivity rates. Employing an artificial neural network, we explore the relationship among daily confirmed case counts, testing data, population statistics, and the actual daily case count. The trained artificial neural network undergoes testing in in-sample, out-of-sample, and several hypothetical scenarios. A substantial focus of this paper lies in the estimation of the daily true case count, which serves as the output set of our training process. To achieve this, we implement a regularized backcasting technique that utilizes death counts and the infection fatality ratio (IFR), as the death statistics and serological surveys (providing the IFR) as more reliable COVID-19 data sources. Addressing the impact of factors such as age distribution, vaccination, and emerging variants on the IFR time series is a pivotal aspect of our analysis. We expect our study to enhance our understanding of the genuine implications of the COVID-19 pandemic, subsequently benefiting mitigation strategies. 
    more » « less