skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Title: Polymer‐Grafted Nanoparticles as Single‐Component, High Filler Content Composites via Simple Transformative Aging
Abstract Polymer‐grafted nanoparticles (PGNPs) are ideal additives to enhance the mechanical properties and functionality of a polymer matrix and can even potentially serve as single‐component building blocks for highly filled composites if the polymer content is kept low. The major challenge facing such syntheses is that PGNP‐based solids with short polymer brushes often have low mechanical strength and limited processability. It therefore remains difficult to form robust architectures with a variety of 3D macroscopic shapes from single‐component PGNP composites. Forming covalent bonds between cross‐linkable PGNPs is a promising route for overcoming this limitation in processability and functionality, but cross‐linking strategies often require careful blending of components or slow assembly methods. Here, a transformative aging strategy is presented that uses anhydride cross‐linking to enable facile processing of single‐component PGNP solids via thermoforming into arbitrary shapes. The use of lowTgpolymer brushes enables the production of macroscopic composites with>30 vol% homogeneously distributed filler, and aging increases stiffness by 1–2 orders of magnitude. This strategy can be adapted to a variety of polymer and nanofiller compositions and is therefore a potentially versatile approach to synthesize nanocomposites that are functional, mechanically robust, and easily processable.  more » « less
Award ID(s):
1653289
PAR ID:
10448032
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
32
Issue:
6
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Polymer‐brush‐grafted nanoparticles (PGNPs) that can be covalently crosslinked post‐processing enable the fabrication of mechanically robust and chemically stable polymer nanocomposites with high inorganic filler content. Modifying PGNP brushes to append UV‐activated crosslinkers along the polymer chains would permit a modular crosslinking strategy applicable to a diverse range of nanocomposite compositions. Further, light‐activated crosslinking reactions enable spatial control of crosslink density to program intentionally inhomogeneous mechanical responses. Here, a method of synthesizing composites using UV‐crosslinkable brush‐coated nanoparticles (referred to as UV‐XNPs) is introduced that can be applied to various monomer compositions by incorporating photoinitiators into the polymer brushes. UV crosslinking of processed UV‐XNP structures can increase their tensile modulus up to 15‐fold without any noticeable alteration to their appearance or shape. By using photomasks to alter UV intensity across a sample, intentionally designed inhomogeneities in crosslink density result in predetermined anisotropic shape changes under strain. This unique capability of UV‐XNP materials is applied to stiffness‐patterned flexible electronic substrates that prevent the delamination of rigid components under deformation. The potential of UV‐XNPs as functional, soft device components is further demonstrated by wearable devices that can be modified post‐fabrication to customize their performance, permitting the ability to add functionality to existing device architectures. 
    more » « less
  2. Abstract Filler aggregation in polymer matrix nanocomposites leads to inhomogeneity in particle distribution and deterioration of mechanical properties. The use of polymer‐grafted nanoparticles (PGNPs) with polymers directly attached to the particle surfaces precludes aggregation of the filler. However, solids composed of PGNPs are mechanically weak unless the grafted chains are long enough to form entanglements between particles, and requiring long grafts limits the achievable filler density of the nanocomposite. In this work, long, entangled grafts are replaced with short reactive polymers that form covalent crosslinks between particles. Crosslinkable PGNPs, referred to as XNPs, can be easily processed from solution and subsequently cured to yield a highly filled yet mechanically robust composite. In this specific instance, silica nanoparticles are grafted with poly(glycidyl methacrylate), cast into films, and crosslinked with multifunctional amines at elevated temperatures. Indentation and scratch experiments show significant enhancement of hardness, modulus, and scratch resistance compared to non‐crosslinked PGNPs and to crosslinked polymer films without nanoparticle reinforcement. Loadings of up to 57 wt% are achieved while yielding uniform films that deform locally in a predominantly elastic manner. XNPs therefore potentially allow for the formulation of robust nanocomposites with a high level of functionality imparted by the selected filler particles. 
    more » « less
  3. In this Account, we describe our recent work in developing polymer brush coatings for nanoparticles, which we use to modulate particle behavior on demand, select specific nanoscopic architectures to form, and bolster traditional bulk polymers to form stronger materials by design. Distinguished by the polymer type and capabilities, three classes of nanoparticles are discussed here: nanocomposite tectons (NCTs), which use synthetic polymers end-functionalized with supramolecular recognition groups capable of directing their assembly; programmable atom equivalents (PAEs) containing brushes of synthetic DNA that employ Watson–Crick base pairing to encode particle binding interactions; and cross-linkable nanoparticles (XNPs) that can both stabilize nanoparticles in solution and polymer matrices and subsequently form multivalent cross-links to strengthen polymer composites. We describe the formation of these brushes through “grafting-from” and “grafting-to” strategies and illustrate aspects that are important for future advancement. We also examine the new capabilities brushes provide, looking closely at dynamic polymer processes that provide control over the assembly state of particles. Finally, we provide a brief overview of the technological applications of nanoparticles with polymer brushes, focusing on the integration of nanoparticles into traditional materials and the processing of nanoparticles into bulk solids. 
    more » « less
  4. Abstract Dispersing carbon nanomaterials in solvents is effective in transferring their significant mechanical and functional properties to polymers and nanocomposites. However, poor dispersion of carbon nanomaterials impedes exploiting their full potential in nanocomposites. Cellulose nanocrystals (CNCs) are promising for dispersing and stabilizing pristine carbon nanotubes (pCNTs) and graphene nanoplatelets (pGnP) in protic media without functionalization. Here, the underlying mechanisms at the molecular level are investigated between CNC and pCNT/pGnP that stabilize their dispersion in polar solvents. Based on the spectroscopy and microscopy characterization of CNCpCNT/pGnP and density functional theory (DFT) calculations, an additional intermolecular mechanism is proposed between CNC and pCNT/pGnP that forms carbonoxygen covalent bonds between hydroxyl end groups of CNCs and the defected sites of pCNTs/pGnPs preventing re‐agglomeration in polar solvents. This work's findings indicate that the CNC‐assisted process enables new capabilities in harnessing nanostructures at the molecular level and tailoring the performance of nanocomposites at higher length scales. 
    more » « less
  5. The adaptive mechanical properties of soft and fibrous biological materials are relevant to their functionality. The emergence of the macroscopic response of these materials to external stress and intrinsic cell traction from local deformations of their structural components is not well understood. Here, we investigate the nonlinear elastic behavior of blood clots by combining microscopy, rheology, and an elastic network model that incorporates the stretching, bending, and buckling of constituent fibrin fibers. By inhibiting fibrin cross-linking in blood clots, we observe an anomalous softening regime in the macroscopic shear response as well as a reduction in platelet-induced clot contractility. Our model explains these observations from two independent macroscopic measurements in a unified manner, through a single mechanical parameter, the bending stiffness of individual fibers. Supported by experimental evidence, our mechanics-based model provides a framework for predicting and comprehending the nonlinear elastic behavior of blood clots and other active biopolymer networks in general. 
    more » « less