Abstract Blood clotting is the body’s natural reaction in wound healing and is also the cause of many pathologies. Fibrin – the main protein in the clotting process provides clots’ mechanical strength by forming a scaffold of complex fibrin fibers. Fibrin fibers exhibit high extensibility and primarily elastic properties under static loading, which differ from in vivo dynamic forces. In many biological materials, the mechanical response changes under repeated loading/unloading (cyclic loading). Using lateral force microscopy, we show fibrin fibers possess viscoelastic behavior and experience irreversible damage under cyclic loading. Cross-linking results in a more rigid structure with permanent damage occurring mostly at larger strains, which is corroborated by computational modeling of fibrin extension using a hyperelastic model. Molecular spectroscopy analysis with broadband coherent anti-Stokes Raman scattering spectroscopy in addition to molecular dynamic simulations allow identification of the source of damage, the unfolding pattern, and inter and intramolecular changes in fibrin. The results show partial recovery of protein’s secondary and tertiary structures under load, providing deeper understanding of fibrin’s unique behavior in wound healing or pathologies like stroke and embolism. 
                        more » 
                        « less   
                    
                            
                            Clots reveal anomalous elastic behavior of fiber networks
                        
                    
    
            The adaptive mechanical properties of soft and fibrous biological materials are relevant to their functionality. The emergence of the macroscopic response of these materials to external stress and intrinsic cell traction from local deformations of their structural components is not well understood. Here, we investigate the nonlinear elastic behavior of blood clots by combining microscopy, rheology, and an elastic network model that incorporates the stretching, bending, and buckling of constituent fibrin fibers. By inhibiting fibrin cross-linking in blood clots, we observe an anomalous softening regime in the macroscopic shear response as well as a reduction in platelet-induced clot contractility. Our model explains these observations from two independent macroscopic measurements in a unified manner, through a single mechanical parameter, the bending stiffness of individual fibers. Supported by experimental evidence, our mechanics-based model provides a framework for predicting and comprehending the nonlinear elastic behavior of blood clots and other active biopolymer networks in general. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10527269
- Publisher / Repository:
- American Association for the Advancement of Science
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 10
- Issue:
- 2
- ISSN:
- 2375-2548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Fibrin is the main component of blood clots. The mechanical properties of fibrin are therefore of critical importance in successful hemostasis. One of the divalent cations released by platelets during hemostasis is Zn2+; however, its effect on the network structure of fibrin gels and on the resultant mechanical properties remains poorly understood. Here, by combining mechanical measurements with three-dimensional confocal microscopy imaging, we show that Zn2+can tune the fibrin network structure and alter its mechanical properties. In the presence of Zn2+, fibrin protofibrils form large bundles that cause a coarsening of the fibrin network due to an increase in fiber diameter and reduction of the total fiber length. We further show that the protofibrils in these bundles are loosely coupled to one another, which results in a decrease of the elastic modulus with increasing Zn2+concentrations. We explore the elastic properties of these networks at both low and high stress: At low stress, the elasticity originates from pulling the thermal slack out of the network, and this is consistent with the thermal bending of the fibers. By contrast, at high stress, the elasticity exhibits a common master curve consistent with the stretching of individual protofibrils. These results show that the mechanics of a fibrin network are closely correlated with its microscopic structure and inform our understanding of the structure and physical mechanisms leading to defective or excessive clot stiffness.more » « less
- 
            Abstract Thromboembolic diseases are a significant cause of mortality and are clinically treated enzymatically with tissue plasminogen activator (tPA). Interestingly, prior studies in fibrin fibers and fibrin gels have demonstrated that thrombolysis may be mechanically sensitive. This study aims to expand mechano‐lytic studies to whole blood clots. Furthermore, this study investigates not only how mechanics impacts lysis but also how lysis impacts mechanics. Therefore, clots made from whole human blood are exposed to tPA while the clots are either stretched or unstretched. After, the resulting degree of clot lysis is measured by weighing the clots and by measuring the concentration of D‐dimer in the surrounding bath. Additionally, each clot's mechanical properties are measured. This study finds that mechanical stretch accelerates loss in clot weight but does not impact the lysis rate as measured by D‐dimer. Moreover, lysis not only removes clot volume but also reduces the remaining clot's stiffness and toughness. In summary, tPA‐induced lysis of whole clot appears mechanically insensitive, but stretch reduces clot weight. Furthermore, results show that thrombolysis weakens clot. This suggests that thrombolysis may increase the risk of secondary embolizations but may also ease clot removal during thrombectomy, for example.more » « less
- 
            Fibrinolysis, the plasmin-mediated degradation of the fibrin mesh that stabilizes blood clots, is an important physiological process, and understanding mechanisms underlying lysis is critical for improved stroke treatment. Experimentalists are now able to study lysis on the scale of single fibrin fibers, but mathematical models of lysis continue to focus mostly on fibrin network degradation. Experiments have shown that while some degradation occurs along the length of a fiber, ultimately the fiber is cleaved at a single location. We built a 2-dimensional stochastic model of a fibrin fiber cross-section that uses the Gillespie algorithm to study single fiber lysis initiated by plasmin. We simulated the model over a range of parameter values to learn about patterns and rates of single fiber lysis in various physiological conditions. We also used epifluorescent microscopy to measure the cleavage times of fibrin fibers with different apparent diameters. By comparing our model results to the laboratory experiments, we were able to: 1) suggest value ranges for unknown rate constants(namely that the degradation rate of fibrin by plasmin should be ≤ 10 s−1and that if plasmin crawls, the rate of crawling should be between 10 s−1and 60 s−1); 2) estimate the fraction of fibrin within a fiber cross-section that must be degraded for the fiber to cleave in two; and 3) propose that that fraction is higher in thinner fibers and lower in thicker fibers. Collectively, this information provides more details about how fibrin fibers degrade, which can be leveraged in the future for a better understanding of why fibrinolysis is impaired in certain disease states, and could inform intervention strategies.more » « less
- 
            Abstract The maintenance of hemostasis to ensure vascular integrity is dependent upon the rapid conversion of zymogen species of the coagulation cascade to their enzymatically active forms. This process culminates in the generation of the serine protease thrombin and polymerization of fibrin to prevent vascular leak at sites of endothelial cell injury or loss of cellular junctions. Thrombin generation can be initiated by the extrinsic pathway of coagulation through exposure of blood to tissue factor at sites of vascular damage, or alternatively by the coagulation factor (F) XII activated by foreign surfaces with negative charges, such as glass, through the contact activation pathway. Here, we used transient particle tracking microrheology to investigate the mechanical properties of fibrin in response to thrombin generation downstream of both coagulation pathways. We found that the structural heterogeneity of fibrin formation was dependent on the reaction kinetics of thrombin generation. Pharmacological inhibition of FXII activity prolonged the time to form fibrin and increased the degree of heterogeneity of fibrin, resulting in fibrin clots with reduced mechanical properties. Taken together, this study demonstrates a dependency of the physical biology of fibrin formation on activation of the contact pathway of coagulation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    