skip to main content


Title: Neutrino-driven Winds in Three-dimensional Core-collapse Supernova Simulations
Abstract

In this paper, we analyze the neutrino-driven winds that emerge in 12 unprecedentedly long-duration 3D core-collapse supernova simulations done using the code Fornax. The 12 models cover progenitors with zero-age main-sequence mass between 9 and 60 solar masses. In all our models, we see transonic outflows that are at least 2 times as fast as the surrounding ejecta and that originate generically from a proto−neutron star surface atmosphere that is turbulent and rotating. We find that winds are common features of 3D simulations, even if there is anisotropic early infall. We find that the basic dynamical properties of 3D winds behave qualitatively similarly to those inferred in the past using simpler 1D models, but that the shape of the emergent wind can be deformed, very aspherical, and channeled by its environment. The thermal properties of winds for less massive progenitors very approximately recapitulate the 1D stationary solutions, while for more massive progenitors they deviate significantly owing to aspherical accretion. TheYetemporal evolution in winds is stochastic, and there can be some neutron-rich phases. Though no strongr-process is seen in any model, a weakr-process can be produced, and isotopes up to90Zr are synthesized in some models. Finally, we find that there is at most a few percent of a solar mass in the integrated wind component, while the energy carried by the wind itself can be as much as 10%–20% of the total explosion energy.

 
more » « less
NSF-PAR ID:
10448089
Author(s) / Creator(s):
;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
954
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 114
Size(s):
["Article No. 114"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The core collapse of rapidly rotating massive ∼ 10Mstars (“collapsars”), and the resulting formation of hyperaccreting black holes, comprise a leading model for the central engines of long-duration gamma-ray bursts (GRBs) and promising sources ofr-process nucleosynthesis. Here, we explore the signatures of collapsars from progenitors with helium cores ≳ 130Mabove the pair-instability mass gap. While the rapid collapse to a black hole likely precludes prompt explosions in these systems, we demonstrate that disk outflows can generate a large quantity (up to ≳ 50M) of ejecta, comprised of ≳ 5–10Minr-process elements and ∼ 0.1–1Mof56Ni, expanding at velocities ∼0.1 c. Radioactive heating of the disk wind ejecta powers an optical/IR transient, with a characteristic luminosity ∼ 1042erg s−1and a spectral peak in the near-IR (due to the high optical/UV opacities of lanthanide elements), similar to kilonovae from neutron star mergers, but with longer durations ≳1 month. These “super-kilonovae” (superKNe) herald the birth of massive black holes ≳ 60M, which—as a result of disk wind mass loss—can populate the pair-instability mass gap “from above,” and could potentially create the binary components of GW190521. SuperKNe could be discovered via wide-field surveys, such as those planned with the Roman Space Telescope, or via late-time IR follow-up observations of extremely energetic GRBs. Multiband gravitational waves of ∼ 0.1–50 Hz from nonaxisymmetric instabilities in self-gravitating massive collapsar disks are potentially detectable by proposed observatories out to hundreds of Mpc; in contrast to the “chirp” from binary mergers, the collapsar gravitational-wave signal decreases in frequency as the disk radius grows (“sad trombone”).

     
    more » « less
  2. Abstract

    Gamma-ray bursts (GRBs) have historically been divided into two classes. Short-duration GRBs are associated with binary neutron star mergers (NSMs), while long-duration bursts are connected to a subset of core-collapse supernovae (SNe). GRB 211211A recently made headlines as the first long-duration burst purportedly generated by an NSM. The evidence for an NSM origin was excess optical and near-infrared emission consistent with the kilonova observed after the gravitational-wave-detected NSM GW170817. Kilonovae derive their unique electromagnetic signatures from the properties of the heavy elements synthesized by rapid neutron capture (ther-process) following the merger. Recent simulations suggest that the “collapsar” SNe that trigger long GRBs may also producer-process elements. While observations of GRB 211211A and its afterglow rule out an SN typical of those that follow long GRBs, an unusual collapsar could explain both the duration of GRB 211211A and ther-process-powered excess in its afterglow. We use semianalytic radiation transport modeling to evaluate low-mass collapsars as the progenitors of GRB 211211A–like events. We compare a suite of collapsar models to the afterglow-subtracted emission that followed GRB 211211A, and find the best agreement for models with high kinetic energies and an unexpected pattern of56Ni enrichment. We discuss how core-collapse explosions could produce such ejecta, and how distinct our predictions are from those generated by more straightforward kilonova models. We also show that radio observations can distinguish between kilonovae and the more massive collapsar ejecta we consider here.

     
    more » « less
  3. Abstract

    The fate of stars in the zero-age main-sequence (ZAMS) range ≈8–12Mis unclear. They could evolve to form white dwarfs or explode as electron-capture supernovae (SNe) or iron core-collapse SNe (CCSNe). Even though the initial mass function indicates that this mass range should account for over 40% of all CCSN progenitors, few have been observationally confirmed, likely due to the faintness and rapid evolution of some of these transients. In this paper, we present a sample of nine Ca-rich/O-poor Type IIb SNe detected by the Zwicky Transient Facility with progenitors likely in this mass range. These sources have a [Caii]λλ7291, 7324/[Oi]λλ6300, 6364 flux ratio of ≳2 in their nebular spectra. Comparing the measured [Oi] luminosity (≲1039erg s−1) and derived oxygen mass (≈0.01M) with theoretical models, we infer that the progenitor ZAMS mass for these explosions is less than 12M. The ejecta properties (Mej≲ 1MandEkin∼ 1050erg) are also consistent. The low ejecta mass of these sources indicates a class of strongly-stripped SNe that is a transition between the regular stripped-envelope SNe and ultra-stripped SNe. The progenitor could be stripped by a main-sequence companion and result in the formation of a neutron star−main sequence binary. Such binaries have been suggested to be progenitors of neutron star−white dwarf systems that could merge within a Hubble time and be detectable with LISA.

     
    more » « less
  4. Abstract

    Using 20 long-term 3D core-collapse supernova simulations, we find that lower compactness progenitors that explode quasi-spherically due to the short delay to explosion experience smaller neutron star recoil kicks in the ∼100−200 km s−1range, while higher compactness progenitors that explode later and more aspherically leave neutron stars with kicks in the ∼300−1000 km s−1range. In addition, we find that these two classes are correlated with the gravitational mass of the neutron star. This correlation suggests that the survival of binary neutron star systems may in part be due to their lower kick speeds. We also find a correlation between the kick and both the mass dipole of the ejecta and the explosion energy. Furthermore, one channel of black hole birth leaves masses of ∼10M, is not accompanied by a neutrino-driven explosion, and experiences small kicks. A second channel is through a vigorous explosion that leaves behind a black hole with a mass of ∼3.0Mkicked to high speeds. We find that the induced spins of nascent neutron stars range from seconds to ∼10 ms, but do not yet see a significant spin/kick correlation for pulsars. We suggest that if an initial spin biases the explosion direction, a spin/kick correlation would be a common byproduct of the neutrino mechanism of core-collapse supernovae. Finally, the induced spin in explosive black hole formation is likely large and in the collapsar range. This new 3D model suite provides a greatly expanded perspective and appears to explain some observed pulsar properties by default.

     
    more » « less
  5. ABSTRACT

    Neutron star merger accretion discs can launch neutron-rich winds of >10−2M⊙. This ejecta is a prime site for r-process nucleosynthesis, which will produce a range of radioactive heavy nuclei. The decay of these nuclei releases enough energy to accelerate portions of the wind by ∼0.1c. Here, we investigate the effect of r-process heating on the dynamical evolution of disc winds. We extract the wind from a 3D general relativistic magnetohydrodynamic simulation of a disc from a post-merger system. This is used to create inner boundary conditions for 2D hydrodynamic simulations that continue the original 3D simulation. We perform two such simulations: one that includes the r-process heating, and another one that does not. We follow the hydrodynamic simulations until the winds reach homology (60 s). Using time-dependent multifrequency multidimensional Monte Carlo radiation transport simulations, we then calculate the kilonova light curves from the winds with and without dynamical r-process heating. We find that the r-process heating can substantially alter the velocity distribution of the wind, shifting the mass-weighted median velocity from 0.06c to 0.12c. The inclusion of the dynamical r-process heating makes the light curve brighter and bluer at $\sim 1\, \mathrm{d}$ post-merger. However, the high-velocity tail of the ejecta distribution and the early ($\lesssim 1\, \mathrm{d}$) light curves are largely unaffected.

     
    more » « less