skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling sparse longitudinal data on Riemannian manifolds
Abstract Modern data collection often entails longitudinal repeated measurements that assume values on a Riemannian manifold. Analyzing such longitudinal Riemannian data is challenging, because of both the sparsity of the observations and the nonlinear manifold constraint. Addressing this challenge, we propose an intrinsic functional principal component analysis for longitudinal Riemannian data. Information is pooled across subjects by estimating the mean curve with local Fréchet regression and smoothing the covariance structure of the linearized data on tangent spaces around the mean. Dimension reduction and imputation of the manifold‐valued trajectories are achieved by utilizing the leading principal components and applying best linear unbiased prediction. We show that the proposed mean and covariance function estimates achieve state‐of‐the‐art convergence rates. For illustration, we study the development of brain connectivity in a longitudinal cohort of Alzheimer's disease and normal participants by modeling the connectivity on the manifold of symmetric positive definite matrices with the affine‐invariant metric. In a second illustration for irregularly recorded longitudinal emotion compositional data for unemployed workers, we show that the proposed method leads to nicely interpretable eigenfunctions and principal component scores. Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative database.  more » « less
Award ID(s):
2014626
PAR ID:
10448123
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Biometrics
Volume:
77
Issue:
4
ISSN:
0006-341X
Format(s):
Medium: X Size: p. 1328-1341
Size(s):
p. 1328-1341
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Functional principal component analysis has been shown to be invaluable for revealing variation modes of longitudinal outcomes, which serve as important building blocks for forecasting and model building. Decades of research have advanced methods for functional principal component analysis, often assuming independence between the observation times and longitudinal outcomes. Yet such assumptions are fragile in real-world settings where observation times may be driven by outcome-related processes. Rather than ignoring the informative observation time process, we explicitly model the observational times by a general counting process dependent on time-varying prognostic factors. Identification of the mean, covariance function and functional principal components ensues via inverse intensity weighting. We propose using weighted penalized splines for estimation and establish consistency and convergence rates for the weighted estimators. Simulation studies demonstrate that the proposed estimators are substantially more accurate than the existing ones in the presence of a correlation between the observation time process and the longitudinal outcome process. We further examine the finite-sample performance of the proposed method using the Acute Infection and Early Disease Research Program study. 
    more » « less
  2. Abstract Motivated by recent work involving the analysis of biomedical imaging data, we present a novel procedure for constructing simultaneous confidence corridors for the mean of imaging data. We propose to use flexible bivariate splines over triangulations to handle an irregular domain of the images that is common in brain imaging studies and in other biomedical imaging applications. The proposed spline estimators of the mean functions are shown to be consistent and asymptotically normal under some regularity conditions. We also provide a computationally efficient estimator of the covariance function and derive its uniform consistency. The procedure is also extended to the two‐sample case in which we focus on comparing the mean functions from two populations of imaging data. Through Monte Carlo simulation studies, we examine the finite sample performance of the proposed method. Finally, the proposed method is applied to analyze brain positron emission tomography data in two different studies. One data set used in preparation of this article was obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. 
    more » « less
  3. Abstract Alzheimer's disease is the most common neurodegenerative disease. The aim of this study is to infer structural changes in brain connectivity resulting from disease progression using cortical thickness measurements from a cohort of participants who were either healthy control, or with mild cognitive impairment, or Alzheimer's disease patients. For this purpose, we develop a novel approach for inference of multiple networks with related edge values across groups. Specifically, we infer a Gaussian graphical model for each group within a joint framework, where we rely on Bayesian hierarchical priors to link the precision matrix entries across groups. Our proposal differs from existing approaches in that it flexibly learns which groups have the most similar edge values, and accounts for the strength of connection (rather than only edge presence or absence) when sharing information across groups. Our results identify key alterations in structural connectivity that may reflect disruptions to the healthy brain, such as decreased connectivity within the occipital lobe with increasing disease severity. We also illustrate the proposed method through simulations, where we demonstrate its performance in structure learning and precision matrix estimation with respect to alternative approaches. 
    more » « less
  4. We consider a class of Riemannian optimization problems where the objective is the sum of a smooth function and a nonsmooth function considered in the ambient space. This class of problems finds important applications in machine learning and statistics, such as sparse principal component analysis, sparse spectral clustering, and orthogonal dictionary learning. We propose a Riemannian alternating direction method of multipliers (ADMM) to solve this class of problems. Our algorithm adopts easily computable steps in each iteration. The iteration complexity of the proposed algorithm for obtaining an ϵ-stationary point is analyzed under mild assumptions. Existing ADMMs for solving nonconvex problems either do not allow a nonconvex constraint set or do not allow a nonsmooth objective function. Our algorithm is the first ADMM-type algorithm that minimizes a nonsmooth objective over manifold—a particular nonconvex set. Numerical experiments are conducted to demonstrate the advantage of the proposed method. Funding: The research of S. Ma was supported in part by the Office of Naval Research [Grant N00014-24-1-2705]; the National Science Foundation [Grants DMS-2243650, CCF-2308597, CCF-2311275, and ECCS-2326591]; the University of California, Davis Center for Data Science and Artificial Intelligence Research Innovative Data Science Seed Funding Program; and Rice University start-up fund. 
    more » « less
  5. Principal component analysis of cylindrical neighborhoods is proposed to study the local geometry of embedded Riemannian manifolds. At every generic point and scale, a highdimensional cylinder orthogonal to the tangent space at the point cuts out a path-connected patch whose point-set distribution in ambient space encodes the intrinsic and extrinsic curvature. The covariance matrix of the points from that neighborhood has eigenvectors whose scale limit tends to the Frenet-Serret frame for curves, and to what we call the Ricci-Weingarten principal directions for submanifolds. More importantly, the limit of differences and products of eigenvalues can be used to recover curvature information at the point. The formula for hypersurfaces in terms of principal curvatures is particularly simple and plays a crucial role in the study of higher-codimension cases. 
    more » « less