skip to main content


Title: Bayesian modeling of multiple structural connectivity networks during the progression of Alzheimer's disease
Abstract

Alzheimer's disease is the most common neurodegenerative disease. The aim of this study is to infer structural changes in brain connectivity resulting from disease progression using cortical thickness measurements from a cohort of participants who were either healthy control, or with mild cognitive impairment, or Alzheimer's disease patients. For this purpose, we develop a novel approach for inference of multiple networks with related edge values across groups. Specifically, we infer a Gaussian graphical model for each group within a joint framework, where we rely on Bayesian hierarchical priors to link the precision matrix entries across groups. Our proposal differs from existing approaches in that it flexibly learns which groups have the most similar edge values, and accounts for the strength of connection (rather than only edge presence or absence) when sharing information across groups. Our results identify key alterations in structural connectivity that may reflect disruptions to the healthy brain, such as decreased connectivity within the occipital lobe with increasing disease severity. We also illustrate the proposed method through simulations, where we demonstrate its performance in structure learning and precision matrix estimation with respect to alternative approaches.

 
more » « less
Award ID(s):
1811568 1811445
NSF-PAR ID:
10455843
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Biometrics
Volume:
76
Issue:
4
ISSN:
0006-341X
Format(s):
Medium: X Size: p. 1120-1132
Size(s):
["p. 1120-1132"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In this article, we focus on estimating the joint relationship between structural magnetic resonance imaging (sMRI) gray matter (GM), and multiple functional MRI (fMRI) intrinsic connectivity networks (ICNs). To achieve this, we propose a multilink joint independent component analysis (ml‐jICA) method using the same core algorithm as jICA. To relax the jICA assumption, we propose another extension called parallel multilink jICA (pml‐jICA) that allows for a more balanced weight distribution over ml‐jICA/jICA. We assume a shared mixing matrix for both the sMRI and fMRI modalities, while allowing for different mixing matrices linking the sMRI data to the different ICNs. We introduce the model and then apply this approach to study the differences in resting fMRI and sMRI data from patients with Alzheimer's disease (AD) versus controls. The results of the pml‐jICA yield significant differences with large effect sizes that include regions in overlapping portions of default mode network, and also hippocampus and thalamus. Importantly, we identify two joint components with partially overlapping regions which show opposite effects for AD versus controls, but were able to be separated due to being linked to distinct functional and structural patterns. This highlights the unique strength of our approach and multimodal fusion approaches generally in revealing potentially biomarkers of brain disorders that would likely be missed by a unimodal approach. These results represent the first work linking multiple fMRI ICNs to GM components within a multimodal data fusion model and challenges the typical view that brain structure is more sensitive to AD than fMRI.

     
    more » « less
  2. Summary

    Medical imaging data with thousands of spatially correlated data points are common in many fields. Methods that account for spatial correlation often require cumbersome matrix evaluations which are prohibitive for data of this size, and thus current work has either used low-rank approximations or analyzed data in blocks. We propose a method that accounts for nonstationarity, functional connectivity of distant regions of interest, and local signals, and can be applied to large multi-subject datasets using spectral methods combined with Markov Chain Monte Carlo sampling. We illustrate using simulated data that properly accounting for spatial dependence improves precision of estimates and yields valid statistical inference. We apply the new approach to study associations between cortical thickness and Alzheimer's disease, and find several regions of the cortex where patients with Alzheimer's disease are thinner on average than healthy controls.

     
    more » « less
  3. Diffusion imaging and tractography enable mapping structural connections in the human brain, in-vivo. Linear Fascicle Evaluation (LiFE) is a state-of-the-art approach for pruning spurious connections in the estimated structural connectome, by optimizing its fit to the measured diffusion data. Yet, LiFE imposes heavy demands on computing time, precluding its use in analyses of large connectome databases. Here, we introduce a GPU-based implementation of LiFE that achieves 50-100x speedups over conventional CPU-based implementations for connectome sizes of up to several million fibers. Briefly, the algorithm accelerates generalized matrix multiplications on a compressed tensor through efficient GPU kernels, while ensuring favorable memory access patterns. Leveraging these speedups, we advance LiFE’s algorithm by imposing a regularization constraint on estimated fiber weights during connectome pruning. Our regularized, accelerated, LiFE algorithm (“ReAl-LiFE”) estimates sparser connectomes that also provide more accurate fits to the underlying diffusion signal. We demonstrate the utility of our approach by classifying pathological signatures of structural connectivity in patients with Alzheimer’s Disease (AD). We estimated million fiber whole-brain connectomes, followed by pruning with ReAl-LiFE, for 90 individuals (45 AD patients and 45 healthy controls). Linear classifiers, based on support vector machines, achieved over 80% accuracy in classifying AD patients from healthy controls based on their ReAl-LiFE pruned structural connectomes alone. Moreover, classification based on the ReAl-LiFE pruned connectome outperformed both the unpruned connectome, as well as the LiFE pruned connectome, in terms of accuracy. We propose our GPU-accelerated approach as a widely relevant tool for non-negative least-squares optimization, across many domains. 
    more » « less
  4. Abstract

    Modern data collection often entails longitudinal repeated measurements that assume values on a Riemannian manifold. Analyzing such longitudinal Riemannian data is challenging, because of both the sparsity of the observations and the nonlinear manifold constraint. Addressing this challenge, we propose an intrinsic functional principal component analysis for longitudinal Riemannian data. Information is pooled across subjects by estimating the mean curve with local Fréchet regression and smoothing the covariance structure of the linearized data on tangent spaces around the mean. Dimension reduction and imputation of the manifold‐valued trajectories are achieved by utilizing the leading principal components and applying best linear unbiased prediction. We show that the proposed mean and covariance function estimates achieve state‐of‐the‐art convergence rates. For illustration, we study the development of brain connectivity in a longitudinal cohort of Alzheimer's disease and normal participants by modeling the connectivity on the manifold of symmetric positive definite matrices with the affine‐invariant metric. In a second illustration for irregularly recorded longitudinal emotion compositional data for unemployed workers, we show that the proposed method leads to nicely interpretable eigenfunctions and principal component scores. Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative database.

     
    more » « less
  5. Summary

    Inferring brain connectivity network and quantifying the significance of interactions between brain regions are of paramount importance in neuroscience. Although there have recently emerged some tests for graph inference based on independent samples, there is no readily available solution to test the change of brain network for paired and correlated samples. In this article, we develop a paired test of matrix graphs to infer brain connectivity network when the groups of samples are correlated. The proposed test statistic is both bias corrected and variance corrected, and achieves a small estimation error rate. The subsequent multiple testing procedure built on this test statistic is guaranteed to asymptotically control the false discovery rate at the pre-specified level. Both the methodology and theory of the new test are considerably different from the two independent samples framework, owing to the strong correlations of measurements on the same subjects before and after the stimulus activity. We illustrate the efficacy of our proposal through simulations and an analysis of an Alzheimer’s Disease Neuroimaging Initiative dataset.

     
    more » « less