skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gene tree quality affects empirical coalescent branch length estimation
Abstract Assessing effects of gene tree error in coalescent analyses have widely ignored coalescent branch lengths (CBLs) despite their potential utility in estimating ancestral population demographics and detecting species tree anomaly zones. However, the ability of coalescent methods to obtain accurate estimates remains largely unexplored. Errors in gene trees should lead to underestimates of the true CBL, and for a given set of comparisons, longer CBLs should be more accurate. Here, we furthered our empirical understanding of how error in gene tree quality (i.e., locus informativeness and gene tree resolution) affect CBLs using four datasets comprised of ultraconserved elements (UCE) or exons for clades that exhibit wide ranges of branch lengths. For each dataset, we compared the impact of locus informativeness (assessed using number of parsimony‐informative sites) and gene tree resolution on CBL estimates. Our results, in general, showed that CBLs were drastically shorter when estimates included low informative loci. Gene tree resolution also had an impact on UCE datasets, with polytomous gene trees producing longer branches than randomly resolved gene trees. However, resolution did not appear to affect CBL estimates from the more informative exon datasets. Thus, as expected, gene tree quality affects CBL estimates, though this can generally be minimized by using moderate filtering to select more informative loci and/or by allowing polytomies in gene trees. These approaches, as well as additional contributions to improve CBL estimation, should lead to CBLs that are useful for addressing evolutionary and biological questions.  more » « less
Award ID(s):
1655683
PAR ID:
10448184
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Zoologica Scripta
Volume:
51
Issue:
1
ISSN:
0300-3256
Page Range / eLocation ID:
p. 1-13
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Marker selection has emerged as an important component of phylogenomic study design due to rising concerns of the effects of gene tree estimation error, model misspecification, and data-type differences. Researchers must balance various trade-offs associated with locus length and evolutionary rate among other factors. The most commonly used reduced representation data sets for phylogenomics are ultraconserved elements (UCEs) and Anchored Hybrid Enrichment (AHE). Here, we introduce Rapidly Evolving Long Exon Capture (RELEC), a new set of loci that targets single exons that are both rapidly evolving (evolutionary rate faster than RAG1) and relatively long in length (>1,500 bp), while at the same time avoiding paralogy issues across amniotes. We compare the RELEC data set to UCEs and AHE in squamate reptiles by aligning and analyzing orthologous sequences from 17 squamate genomes, composed of 10 snakes and 7 lizards. The RELEC data set (179 loci) outperforms AHE and UCEs by maximizing per-locus genetic variation while maintaining presence and orthology across a range of evolutionary scales. RELEC markers show higher phylogenetic informativeness than UCE and AHE loci, and RELEC gene trees show greater similarity to the species tree than AHE or UCE gene trees. Furthermore, with fewer loci, RELEC remains computationally tractable for full Bayesian coalescent species tree analyses. We contrast RELEC to and discuss important aspects of comparable methods, and demonstrate how RELEC may be the most effective set of loci for resolving difficult nodes and rapid radiations. We provide several resources for capturing or extracting RELEC loci from other amniote groups. 
    more » « less
  2. Ruane, Sara (Ed.)
    Abstract Some phylogenetic problems remain unresolved even when large amounts of sequence data are analyzed and methods that accommodate processes such as incomplete lineage sorting are employed. In addition to investigating biological sources of phylogenetic incongruence, it is also important to reduce noise in the phylogenomic dataset by using appropriate filtering approach that addresses gene tree estimation errors. We present the results of a case study in manakins, focusing on the very difficult clade comprising the genera Antilophia and Chiroxiphia. Previous studies suggest that Antilophia is nested within Chiroxiphia, though relationships among Antilophia+Chiroxiphia species have been highly unstable. We extracted more than 11,000 loci (ultra-conserved elements and introns) from whole genomes and conducted analyses using concatenation and multispecies coalescent methods. Topologies resulting from analyses using all loci differed depending on the data type and analytical method, with 2 clades (Antilophia+Chiroxiphia and Manacus+Pipra+Machaeopterus) in the manakin tree showing incongruent results. We hypothesized that gene trees that conflicted with a long coalescent branch (e.g., the branch uniting Antilophia+Chiroxiphia) might be enriched for cases of gene tree estimation error, so we conducted analyses that either constrained those gene trees to include monophyly of Antilophia+Chiroxiphia or excluded these loci. While constraining trees reduced some incongruence, excluding the trees led to completely congruent species trees, regardless of the data type or model of sequence evolution used. We found that a suite of gene metrics (most importantly the number of informative sites and likelihood of intralocus recombination) collectively explained the loci that resulted in non-monophyly of Antilophia+Chiroxiphia. We also found evidence for introgression that may have contributed to the discordant topologies we observe in Antilophia+Chiroxiphia and led to deviations from expectations given the multispecies coalescent model. Our study highlights the importance of identifying factors that can obscure phylogenetic signal when dealing with recalcitrant phylogenetic problems, such as gene tree estimation error, incomplete lineage sorting, and reticulation events. [Birds; c-gene; data type; gene estimation error; model fit; multispecies coalescent; phylogenomics; reticulation] 
    more » « less
  3. Holland, Barbara (Ed.)
    Abstract The evolutionary histories of individual loci in a genome can be estimated independently, but this approach is error-prone due to the limited amount of sequence data available for each gene, which has led to the development of a diverse array of gene tree error correction methods which reduce the distance to the species tree. We investigate the performance of two representatives of these methods: TRACTION and TreeFix. We found that gene tree error correction frequently increases the level of error in gene tree topologies by “correcting” them to be closer to the species tree, even when the true gene and species trees are discordant. We confirm that full Bayesian inference of the gene trees under the multispecies coalescent model is more accurate than independent inference. Future gene tree correction approaches and methods should incorporate an adequately realistic model of evolution instead of relying on oversimplified heuristics. 
    more » « less
  4. Assessing the applicability of theory to major adaptive radiations in deep time represents an extremely difficult problem in evolutionary biology. Neoaves, which includes 95% of living birds, is believed to have undergone a period of rapid diversification roughly coincident with the Cretaceous–Paleogene (K-Pg) boundary. We investigate whether basal neoavian lineages experienced an ecological release in response to ecological opportunity, as evidenced by density compensation. We estimated effective population sizes (Ne) of basal neoavian lineages by combining coalescent branch lengths (CBLs) and the numbers of generations between successive divergences. We used a modified version of Accurate Species TRee Algorithm (ASTRAL) to estimate CBLs directly from insertion–deletion (indel) data, as well as from gene trees using DNA sequence and/or indel data. We found that some divergences near the K-Pg boundary involved unexpectedly high gene tree discordance relative to the estimated number of generations between speciation events. The simplest explanation for this result is an increase in Ne, despite the caveats discussed herein. It appears that at least some early neoavian lineages, similar to the ancestor of the clade comprising doves, mesites, and sandgrouse, experienced ecological release near the time of the K-Pg mass extinction. 
    more » « less
  5. Abstract MotivationPhylogenomics faces a dilemma: on the one hand, most accurate species and gene tree estimation methods are those that co-estimate them; on the other hand, these co-estimation methods do not scale to moderately large numbers of species. The summary-based methods, which first infer gene trees independently and then combine them, are much more scalable but are prone to gene tree estimation error, which is inevitable when inferring trees from limited-length data. Gene tree estimation error is not just random noise and can create biases such as long-branch attraction. ResultsWe introduce a scalable likelihood-based approach to co-estimation under the multi-species coalescent model. The method, called quartet co-estimation (QuCo), takes as input independently inferred distributions over gene trees and computes the most likely species tree topology and internal branch length for each quartet, marginalizing over gene tree topologies and ignoring branch lengths by making several simplifying assumptions. It then updates the gene tree posterior probabilities based on the species tree. The focus on gene tree topologies and the heuristic division to quartets enables fast likelihood calculations. We benchmark our method with extensive simulations for quartet trees in zones known to produce biased species trees and further with larger trees. We also run QuCo on a biological dataset of bees. Our results show better accuracy than the summary-based approach ASTRAL run on estimated gene trees. Availability and implementationQuCo is available on https://github.com/maryamrabiee/quco. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less