skip to main content


Title: Redox-active ligand controlled selectivity of vanadium oxidation on Au(100)
Metal–organic coordination networks at surfaces, formed by on-surface redox assembly, are of interest for designing specific and selective chemical function at surfaces for heterogeneous catalysts and other applications. The chemical reactivity of single-site transition metals in on-surface coordination networks, which is essential to these applications, has not previously been fully characterized. Here, we demonstrate with a surface-supported, single-site V system that not only are these sites active toward dioxygen activation, but the products of that reaction show much higher selectivity than traditional vanadium nanoparticles, leading to only one V-oxo product. We have studied the chemical reactivity of one-dimensional metal–organic vanadium – 3,6-di(2-pyridyl)-1,2,4,5-tetrazine (DPTZ) chains with O 2 . The electron-rich chains self-assemble through an on-surface redox process on the Au(100) surface and are characterized by X-ray photoelectron spectroscopy, scanning tunneling microscopy, high-resolution electron energy loss spectroscopy, and density functional theory. Reaction of V-DPTZ chains with O 2 causes an increase in V oxidation state from V II to V IV , resulting in a single strongly bonded (DPTZ 2− )V IV O product and spillover of O to the Au surface. DFT calculations confirm these products and also suggest new candidate intermediate states, providing mechanistic insight into this on-surface reaction. In contrast, the oxidation of ligand-free V is less complete and results in multiple oxygen-bound products. This demonstrates the high chemical selectivity of single-site metal centers in metal–ligand complexes at surfaces compared to metal nanoislands.  more » « less
Award ID(s):
1610984
NSF-PAR ID:
10093533
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
9
Issue:
6
ISSN:
2041-6520
Page Range / eLocation ID:
1674 to 1685
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Isostructural Cr and Fe nanoporous MIL-101, synthesized without mineralizing agents, are investigated for styrene oxidation utilizing aqueous hydrogen peroxide to yield valuable oxygenates for chemical synthesis applications. Styrene conversion rates and oxygenate product distributions both depend on metal identity, as MIL-101(Fe) is more reactive for total styrene oxidation and is more pathway selective, preferring aldehyde (benzaldehyde) formation at the α-carbon to the aromatic ring, where MIL-101(Cr) sustains epoxide (styrene oxide) production at the same α-carbon. These pathways often involve hydrogen peroxide derived radical intermediates (O, –HOO˙, –HO − ˙) and metallocycle transition states. We postulate that the higher reactivity of one of these surface intermediates, Fe( iv )O relative to Cr( iv )O, leads to higher styrene oxidation rates for MIL-101(Fe), while higher electrophilicity of Cr( iii )–OOH intermediates translates to the higher styrene oxide selectivity observed for MIL-101(Cr). Secondary styrene oxide and benzaldehyde conversions are observed over both analogs, but the former is more prevalent over MIL-101(Fe) due to higher Lewis/Brønsted acid site density and strength compared to MIL-101(Cr). Recyclability experiments combined with characterization via XRD, SEM/EDXS, and FT-IR and UV-vis spectroscopies show that the nature of MIL-101(Fe) sites does not change significantly with each cycle, whereas MIL-101(Cr) suffers from metal leaching, which impacts styrene conversion rates and product distribution. Both catalysts require active site regeneration, though MIL-101(Fe) sites are more susceptible to reactivation, even under mild conditions. Finally, examination of styrene conversion for three unique synthesized phases of MIL-101(Cr) rationalizes that nodal defects are largely responsible for observed reactivity and selectivity but predispose the framework to metal leaching as a predominant deactivation mechanism. 
    more » « less
  2. Here, we expand on the synthesis and characterization of chloride-functionalized polyoxovanadate-alkoxide (POV-alkoxide) clusters, to include the halogenation of mixed-valent vanadium oxide assemblies. These findings build on our previously disclosed results describing the preparation of a mono-anionic chloride-functionalized cluster, [V 6 O 6 Cl(OC 2 H 5 ) 12 ] 1− , by chlorination of [V 6 O 7 (OC 2 H 5 ) 12 ] 2− with AlCl 3 , aimed at understanding the electronic consequences of the introduction of halide-defects in bulk metal oxides ( e.g. VO 2 ). While chlorination of the mixed-valent POV-ethoxide clusters was not possible using AlCl 3 , we have found that the chloride-substituted oxidized derivatives of the Lindqvist vanadium-oxide clusters can be formed using TiCl 3 (thf) 3 with [V 6 O 7 (OC 2 H 5 ) 12 ] n ( n = 1−, 0) or WCl 6 with [V 6 O 7 (OC 2 H 5 ) 12 ] 0 . Characterization of the chloride-containing products, [V 6 O 6 Cl(OC 2 H 5 ) 12 ] n ( n = 0, 1+), was accomplished via 1 H NMR spectroscopy, X-ray crystallography, and elemental analysis. Electronic analysis of the redox series of Cl-doped POV-alkoxide clusters via infrared and electronic absorption spectroscopies revealed all redox events are localized to the vanadyl portion of the cluster, with the site differentiated V III –Cl moiety retaining its reduced oxidation state across a 1.9 V window. These results present new synthetic routes for accessing chloride-doped POV-alkoxide clusters from mixed-valent vanadium oxide precursors. 
    more » « less
  3. Biomass is abundant, inexpensive and renewable, therefore, it is highly expected to play a significant role in our future energy and chemical landscapes. The US DOE has identified furanic compounds (furfural and 5-(hydroxymethyl)furfural (HMF)) as the top platform building-block chemicals that can be readily derived from biomass sources [1]. Electrocatalytic conversion of these furanic compounds is an emerging route for the sustainable production of valuable chemicals [2, 3]. In my presentation, I will first present our recent mechanistic study of electrochemical reduction of furfural through a combination of voltammetry, preparative electrolysis, thiol-electrode modifications, and kinetic isotope studies [4]. It is demonstrated that two distinct mechanisms are operable on metallic Cu electrodes in acidic electrolytes: (i) electrocatalytic hydrogenation (ECH) and (ii) direct electroreduction. The contributions of each mechanism to the observed product distribution are clarified by evaluating the requirement for direct chemical interactions with the electrode surface and the role of adsorbed hydrogen. Further analysis reveals that hydrogenation and hydrogenolysis products are generated by parallel ECH pathways. Understanding the underlying mechanisms enables the manipulation of furfural reduction by rationally tuning the electrode potential, electrolyte pH, and furfural concentration to promote selective formation of important bio-based polymer precursors and fuels. Next, I will present electrocatalytic conversion of HMF to two biobased monomers in an H-type electrochemical cell [5]. HMF reduction (hydrogenation) to 2,5-bis(hydroxymethyl)furan (BHMF) was achieved under mild electrolyte conditions and ambient temperature using a Ag/C cathode. Meanwhile, HMF oxidation to 2,5-furandicarboxylic acid (FDCA) with ~100% efficiency was facilitated under the same conditions by a homogeneous nitroxyl radical redox mediator, together with an inexpensive carbon felt anode. The selectivity and efficiency for Ag-catalyzed BHMF formation were sensitive to cathode potential, owing to competition from HMF hydrodimerization reactions and water reduction (hydrogen evolution). Moreover, the carbon support of Ag/C was active for HMF reduction and contributed to undesired dimer/oligomer formation at strongly cathodic potentials. As a result, high BHMF selectivity and efficiency were only achieved within a narrow potential range near –1.3 V. Fortunately, the selectivity of redox-mediated HMF oxidation was insensitive to anode potential, thus allowing HMF hydrogenation and oxidation half reactions to be performed together in a single cathode-potential-controlled cell. Electrocatalytic HMF conversion in a paired cell achieved high molar yields of BHMF and FDCA, and nearly doubled electron efficiency compared to the unpaired cell. Finally, I will briefly introduce our recent work on the development of a three-electrode flow cell with an oxide-derived Ag (OD-Ag) cathode and catbon felt anode for paring elecatalytic oxidation and reduction of HMF. The flow cell has a remarkable cell voltage reduction from ~7.5 V to ~2.0 V by transferring the electrolysis from the H-type cell to the flow cell [6]. This represents a more than fourfold increase in the energy efficiency at the 10 mA operation. A combined faradaic efficiency of 163% was obtained to BHMF and FDCA. Alternatively, the anodic hydrogen oxidation reaction on platinum further reduced the cell voltage to only ~0.85 V at 10 mA operation. These paired processes have shown potential for integrating renewable electricity and carbon for distributed chemical manufacturing in the future. 
    more » « less
  4. The production of ammonia for agricultural and energy demands has accelerated research for more environmentally-friendly synthesis options, particularly the electrocatalytic reduction of molecular nitrogen (nitrogen reduction reaction, NRR). Catalyst activity for NRR, and selectivity for NRR over the competitive hydrogen evolution reaction (HER), are critical issues for which fundamental knowledge remains scarce. Herein, we present results regarding the NRR activity and selectivity of sputter-deposited titanium nitride and titanium oxynitride films for NRR and HER. Electrochemical, fluorescence and UV absorption measurements show that titanium oxynitride exhibits NRR activity under acidic conditions (pH 1.6, 3.2) but is inactive at pH 7. Ti oxynitride is HER inactive at all these pH values. In contrast, TiN – with no oxygen content upon deposition – is both NRR and HER inactive at all the above pH values. This difference in oxynitride/nitride reactivity is observed despite the fact that both films exhibit very similar surface chemical compositions – predominantly Ti IV oxide – upon exposure to ambient, as determined by ex situ X-ray photoelectron spectroscopy (XPS). XPS, with in situ transfer between electrochemical and UHV environments, however, demonstrates that this Ti IV oxide top layer is unstable under acidic conditions, but stable at pH 7, explaining the inactivity of titanium oxynitride at this pH. The inactivity of TiN at acidic and neutral pH is explained by DFT-based calculations showing that N 2 adsorption at N-ligated Ti centers is energetically significantly less favorable than at O-ligated centers. These calculations also predict that N 2 will not bind to Ti IV centers due to a lack of π-backbonding. Ex situ XPS measurements and electrochemical probe measurements at pH 3.2 demonstrate that Ti oxynitride films undergo gradual dissolution under NRR conditions. The present results demonstrate that the long-term catalyst stability and maintenance of metal cations in intermediate oxidation states for pi-backbonding are critical issues worthy of further examination. 
    more » « less
  5. Abstract

    Creation, stabilization, characterization, and control of single transition metal (TM) atoms may lead to significant advancement of the next-generation catalyst. Metal organic network (MON) in which single TM atoms are coordinated and separated by organic ligands is a promising class of material that may serve as a single atom catalyst. Our density functional theory-based calculations of MONs in which dipyridyl tetrazine (DPTZ) ligands coordinate with a TM atom to form linear chains leads to two types of geometries of the chains. Those with V, Cr, Mo, Fe, Co, Pt, or Pd atoms at the coordination center are planar while those with Au, Ag, Cu, or Ni are non-planar. The formation energies of the chains are high (∼2.0–7.9 eV), suggesting that these MON can be stabilized. Moreover, the calculated adsorption energies of CO and O2on the metal atom at center of the chains with the planar configuration lie in the range 1.0–3.0 eV for V, Cr, Mo, Fe, and Co at the coordination center, paving the way for future studies of CO oxidation on TM-DPTZ chains with the above five atoms at the coordination center.

     
    more » « less