skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Charge injection and decay of nanoscale dielectric films resolved via dynamic scanning probe microscopy
Abstract To satisfy continual demands for higher performance dielectrics in multi‐layer ceramic capacitors and related microelectronic devices, novel characterization methods are necessary for mapping materials properties down to the nanoscale, where enabling materials developments are increasingly relevant. Accordingly, an atomic force microscopy‐based approach is implemented for characterizing insulator performance based on the mapping of discharging dynamics. Following surface charging by biasing a conducting tip contacting a dielectric surface, consecutive non‐contact Kelvin force surface potential mapping (KPFM) reveals charge dissipation via exponential decay. In barium titanate (BTO) thin films engineered with distinct microstructures but identical thicknesses, discharging rates vary by up to a factor of 2, with smaller grain size correlating to longer dissipation times, providing insight into optimal microstructures for improved capacitor performance. High‐resolution potential mapping as a function of time thereby provides a route for directly investigating charge injection and discharging mechanisms in dielectrics, which are increasingly engineered down to the nanoscale and have global implications given the trillions of such devices manufactured each year.  more » « less
Award ID(s):
1726862
PAR ID:
10448254
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of the American Ceramic Society
Volume:
104
Issue:
10
ISSN:
0002-7820
Format(s):
Medium: X Size: p. 5157-5167
Size(s):
p. 5157-5167
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Bioelectronics based on organic mixed conductors offers tremendous application potential in biological interfacing, drug delivery systems, and neuromorphic devices. The ion injection and water swelling upon electrochemical switching can significantly change the molecular packing of polymeric mixed conductors and thus influence the device performance. Herein, we quantify ion and water injection, and analyze the change of microscopic molecular packing of typical polymeric mixed conducting materials, namely poly(3,4‑ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS) and poly(2‐(3,3′‐bis(2‐(2‐(2‐methoxyethoxy)ethoxy) ethoxy)‐[2,2′‐bithiophen]‐5‐yl)thieno[3,2‐b]thiophene) (p(g2T‐TT)), by integrating electrochemical quartz crystal microbalance with dissipation monitoring, in situ charge accumulation spectroscopy, and electrical current‐voltage measurement. The penetration of ions and water can lead to viscous and disordered microstructures in organic mixed conductors and the water uptake property plays a more dominant role in morphological disruption compared with ion uptake is demonstrated. This study demonstrates the potential application of the combined optical, gravimetric, and electrical operando platform in evaluating the structural kinetics of organic mixed conductors and highlights the importance of concertedly tuning the hydration process, structural integrity, and charge transport properties of organic mixed conductors in order to achieve high performance and stable bioelectronic devices. 
    more » « less
  2. Abstract Correlative scanning probe microscopy of chemical identity, surface potential, and mechanical properties provide insight into the structure–function relationships of nanomaterials. However, simultaneous measurement with comparable and high resolution is a challenge. We seamlessly integrated nanoscale photothermal infrared imaging with Coulomb force detection to form peak force infrared–Kelvin probe force microscopy (PFIR‐KPFM), which enables simultaneous nanomapping of infrared absorption, surface potential, and mechanical properties with approximately 10 nm spatial resolution in a single‐pass scan. MAPbBr3perovskite crystals of different degradation pathways were studied in situ. Nanoscale charge accumulations were observed in MAPbBr3near the boundary to PbBr2. PFIR‐KPFM also revealed correlations between residual charges and secondary conformation in amyloid fibrils. PFIR‐KPFM is applicable to other heterogeneous materials at the nanoscale for correlative multimodal characterizations. 
    more » « less
  3. Abstract Developing characterization strategies to better understand nanoscale features in two-dimensional nanomaterials is of crucial importance, as the properties of these materials are many times driven by nanoscale and microscale chemical and structural modifications within the material. For the case of large area monolayer MoSe2flakes, kelvin probe force microscopy coupled with tip-enhanced photoluminescence was utilized to evaluate such features including internal grain boundaries, edge effects, bilayer contributions, and effects of oxidation/aging, many of which are invisible to topographical mapping. A reduction in surface potential due ton-type behavior was observed at the edge of the flakes as well as near grain boundaries. Potential phase mapping, which corresponds to the local dielectric constant, depicted local biexciton and trion states in optically-active regions of interest such as grain boundaries. Finally, nanoscale surface potential and photoluminescence mapping was performed at several stages of oxidation, revealing that various oxidative states can be evaluated during the aging process. Importantly, all of the characterization performed in this study was non-destructive and rapid, crucial for quality evaluation of an exciting class of two-dimensional nanomaterials. 
    more » « less
  4. Abstract Despite remarkable progress in the development of halide perovskite materials and devices, their integration into nanoscale optoelectronics has been hindered by a lack of control over nanoscale patterning. Owing to their tendency to degrade rapidly, perovskites suffer from chemical incompatibility with conventional lithographic processes. Here, we present an alternative, bottom-up approach for precise and scalable formation of perovskite nanocrystal arrays with deterministic control over size, number, and position. In our approach, localized growth and positioning is guided using topographical templates of controlled surface wettability through which nanoscale forces are engineered to achieve sub-lithographic resolutions. With this technique, we demonstrate deterministic arrays of CsPbBr3nanocrystals with tunable dimensions down to <50 nm and positional accuracy <50 nm. Versatile, scalable, and compatible with device integration processes, we then use our technique to demonstrate arrays of nanoscale light-emitting diodes, highlighting the new opportunities that this platform offers for perovskites’ integration into on-chip nanodevices. 
    more » « less
  5. Abstract Dynamically controlling friction in micro- and nanoscale devices is possible using applied electrical bias between contacting surfaces, but this can also induce unwanted reactions which can affect device performance. External electric fields provide a way around this limitation by removing the need to apply bias directly between the contacting surfaces. 2D materials are promising candidates for this approach as their properties can be easily tuned by electric fields and they can be straightforwardly used as surface coatings. This work investigates the friction between single layer graphene and an atomic force microscope tip under the influence of external electric fields. While the primary effect in most systems is electrostatically controllable adhesion, graphene in contact with semiconducting tips exhibits a regime of unexpectedly enhanced and highly tunable friction. The origins of this phenomenon are discussed in the context of fundamental frictional dissipation mechanisms considering stick slip behavior, electron-phonon coupling and viscous electronic flow. 
    more » « less