skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Redescription and phylogenetic affinities of the caimanine Eocaiman cavernensis (Crocodylia, Alligatoroidea) from the Eocene of Argentina
Abstract Caimaninae is one of the few crocodylian lineages that still has living representatives. Today, most of its six extant species are restricted to South and Central America. However, recent discoveries have revealed a more complex evolutionary history, with a fossil record richer than previously thought and a possible North American origin. Among the oldest caimanines isEocaiman cavernensis, from the Eocene of Patagonia, Argentina. It was described by George G. Simpson in the 1930s, representing the first caimanine reported for the Palaeogene. Since then,E. cavernensishas been ubiquitous in phylogenetic studies on the group, but a more detailed morphological description and revision of the taxon were lacking. Here, we present a reassessment ofE. cavernensis, based on first‐hand examination and micro‐computed tomography of the holotype, and reinterpret different aspects of its morphology. We explore the phylogenetic affinities ofE. cavernensisand other caimanines using parsimony and Bayesian inference approaches. Our results provide evidence for a monophyleticEocaimangenus within Caimaninae, even though some highly incomplete taxa (including the congenericEocaiman itaboraiensis) represent significant sources of phylogenetic instability. We also foundCulebrasuchus mesoamericanusas sister to all other caimanines and the North American globidontans (i.e.Brachychampsaand closer relatives) outside Caimaninae. A time‐calibrated tree, obtained using a fossilized birth–death model, shows a possible Campanian origin for the group (76.97 ± 6.7 Ma), which is older than the age estimated using molecular data, and suggests that the earliest cladogenetic events of caimanines took place rapidly and across the K–Pg boundary.  more » « less
Award ID(s):
1754596 1754659
PAR ID:
10448261
Author(s) / Creator(s):
 ;  ;  ;  ;  ;
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Papers in Palaeontology
Volume:
7
Issue:
3
ISSN:
2056-2799
Page Range / eLocation ID:
p. 1205-1231
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Eopneumatosuchus colbertiCrompton and Smith, 1980, known from a single partial skull, is an enigmatic crocodylomorph from the Lower Jurassic Kayenta Formation. In spite of its unique morphology, an exceptionally pneumatic braincase, and presence during a critical time period of crocodylomorph evolution, relatively little is known about this taxon. Here, we redescribe the external cranial morphology ofE.colberti, present novel information on its endocranial anatomy, evaluate its phylogenetic position among early crocodylomorphs, and seek to better characterize its ecology. Our examination clarifies key aspects of cranial suture paths and braincase anatomy. Comparisons with related taxa (e.g.,Protosuchus haughtoni) demonstrate that extreme pneumaticity of the braincase may be more widespread in protosuchids than previously appreciated. Computed tomography scans reveal an endocranial morphology that resembles that of other early crocodylomorphs, in particular the noncrocodyliform crocodylomorphAlmadasuchus figarii. There are, however, key differences in olfactory bulb and cerebral hemisphere morphology, which demonstrate the endocranium of crocodylomorphs is not as conserved as previously hypothesized. Our phylogenetic analysis recoversE.colbertias a close relative ofProtosuchus richardsoniandEdentosuchus tienshanensis, contrasting with previous hypotheses of a sister group relationship with Thalattosuchia. Previous work suggested the inner ear has some similarities to semi‐aquatic crocodyliforms, but the phylogenetic placement ofE.colbertiamong protosuchids with a terrestrial postcranial skeletal morphology complicates paleoecological interpretation. 
    more » « less
  2. Abstract Echinococcus multilocularisis a zoonotic cestode that uses canids as definitive hosts and rodents as intermediate hosts. In humans, this parasite is the causative agent of alveolar echinococcosis. Recently, its range has been expanding across the Northern Hemisphere, and it is increasingly detected in wild canids, domestic dogs, and humans across Canada and the United States. While this expansion has been documented in isolated studies across the continent, a lack of routine sampling in wildlife hinders our ability to anticipate and mitigate further spread ofE. multilocularis. We confirmed the presence ofE. multilocularisin Washington State, USA, using a combination of morphological and molecular techniques across carcasses and field-collected scats of coyotes (Canis latrans), this region’s most common wild canid. Morphological identification of adult worms was confirmed by next-generation sequencing. Over a third of all samples tested positive forE. multiloculariswhen all methodologies were combined. Sequencing revealed a haplotype ofE. multilocularismatching a documented haplotype originally of European origin in British Columbia, Canada. Our study provides the first confirmation ofE. multilocularisin a wild host on the west coast of the U.S and provides additional haplotype information crucial to tracking the geographical expansion of the parasite. We also provide a new next-generation sequencing primer targeting cestodes of canids. The difference in amplification between intestinal and fecal samples suggests that non-invasive fecal sampling using DNA metabarcoding—a popular method of helminth surveillance —may lead to underestimation of prevalence, hindering control measures. The global significance of these findings extends beyond North America;E. multilocularisis a major public health concern in Europe and Asia, where alveolar echinococcosis is increasingly diagnosed in humans. Our study highlights the urgent need for increased surveillance and improved diagnostic strategies worldwide, particularly in regions with significant human-wildlife contact. Author summaryParasites that are transmitted between wildlife, domestic animals, and people are an important part of global health. One such parasite isEchinococcus multilocularis, a small tapeworm of canids that can cause a severe, life-threatening disease in humans called alveolar echinococcosis. Many wild canid hosts of the parasite, such as coyotes, overlap significantly with domestic dogs, which facilitates transmission to humans. In Europe, Asia, and Arctic regions of North America,E. multilocularishas long been recognized as a major public health problem. In recent decades its range has expanded across the Northern Hemisphere, raising concern. In this study, we discoveredE. multilocularisin coyotes in a densely populated area of Washington State, USA — the first detection ofE. multilocularisin a wild host in the region. More than one-third of our coyote samples containedE. multilocularis, confirming that it is widespread in the area. Genetic testing showed that the strain we detected matched one previously found in Canada, originally from Europe. Our findings underscore the importance of monitoringE. multilocularisand other parasites in wildlife so that emerging public health threats can be detected early, reducing risk to people and pets. 
    more » « less
  3. Summary White oak (Quercus alba) is an abundant forest tree species across eastern North America that is ecologically, culturally, and economically important.We report the first haplotype‐resolved chromosome‐scale genome assembly ofQ. albaand conduct comparative analyses of genome structure and gene content against other published Fagaceae genomes. We investigate the genetic diversity of this widespread species and the phylogenetic relationships among oaks using whole genome data.Despite strongly conserved chromosome synteny and genome size acrossQuercus, certain gene families have undergone rapid changes in size, including defense genes. Unbiased annotation of resistance (R) genes across oaks revealed that the overall number of R genes is similar across species – as are the chromosomal locations of R gene clusters – but, gene number within clusters is more labile. We found thatQ. albahas high genetic diversity, much of which predates its divergence from other oaks and likely impacts divergence time estimations. Our phylogenetic results highlight widespread phylogenetic discordance across the genus.The white oak genome represents a major new resource for studying genome diversity and evolution inQuercus. Additionally, we show that unbiased gene annotation is key to accurately assessing R gene evolution inQuercus. 
    more » « less
  4. ABSTRACT Erysiphespecies infecting oaks in North America are common and widespread, but compared to Asia and Europe, the taxonomy and phylogeny of North American species is unknown. The present study addresses this dispairity. Comprehensive multilocus phylogenetic analyses, includingCAM,GAPDH,GS, ITS,RPB2andTUB, revealed a high degree of co‐evolution between North American oaks and theErysiphespp. that infect them. A concatenated multilocus tree and individual trees based on single loci revealed many highly supported species clades. The clades are formally named to conform with the current taxonomic classification. Available names, such asE. abbreviata,E. calocladophoraandE. extensa, are associated with corresponding clades, and are newly circumscribed supported by ex‐type sequences or, if not available, by the designation of epitypes with ex‐epitype sequences.Erysiphe densissimais reintroduced for a clade that corresponds to the old name ‘E. extensavar.curta’. Eight new species are described, includingErysiphe carolinensis,E. gambelii,E. occidentalis,E. phellos,E. pseudoextensa,E. quercophila,E. quercus‐laurifoliaeandE. schweinitziana. A new diagnostically and taxonomically relevant trait associated with the anamorphs of North AmericanErysiphespecies on oaks has been assssed. This is a special conidiophore‐like lateral outgrowth of the superficial hyphae, comparable to ‘aerial hyphae,’ which are also known for species of the powdery mildew genusCystothecawhich also infectQuercusspecies. 
    more » « less
  5. Abstract Reindeer, called caribou in North America, has a circumpolar distribution and all extant populations belong to the same species (Rangifer tarandus). It has survived the Holocene thanks to its immense adaptability and successful coexistence with humans in different forms of hunting and herding cultures. Here, we examine the paternal and maternal history ofRangiferbased on robust Y‐chromosomal and mitochondrial DNA (mtDNA) trees representing Eurasian tundra reindeer, Finnish forest reindeer, Svalbard reindeer, Alaska tundra caribou, and woodland caribou. We first assembled Y‐chromosomal contigs, representing 1.3 Mb of single‐copy Y regions. Based on 545 Y‐chromosomal and 458 mtDNA SNPs defined in 55 males, maximum parsimony trees were created. We observed two well separated clades in both phylogenies: the “EuroBeringian clade” formed by animals from Arctic Islands, Eurasia, and a few from North America and the “North American clade” formed only by caribou from North America. The time calibrated Y tree revealed an expansion and dispersal of lineages across continents after the Last Glacial Maximum. We show for the first time unique paternal lineages in Svalbard reindeer and Finnish forest reindeer and reveal a circumscribed Y haplogroup in Fennoscandian tundra reindeer. The Y chromosome in domesticated reindeer is markedly diverse indicating that several male lineages have undergone domestication and less intensive selection on males. This study placesR. tarandusonto the list of species with resolved Y and mtDNA phylogenies and builds the basis for studies of the distribution and origin of paternal and maternal lineages in the future. 
    more » « less