Abstract Gyroid optical metamaterials consist of triply periodic chiral networks that are attractive photonic structures due to the combination of intriguing optical properties and spontaneous self‐assembly‐based fabrication routes using materials such as block copolymers. A previous experimental investigation found that gyroid metamaterials support strong circular dichroism, beyond what simulations only considering bulk interactions predict. In this work, simulations are used to unravel the contributions of bulk and surface interactions on the circular dichroism spectra of silver‐infilled gyroid metamaterial films. It is found that surface interactions have a significant, often dominating, contribution to circular dichroism. The relative strength of bulk and surface contributions can be tuned by controlling the crystallographic orientation, termination plane of the film, thickness, metal volume fraction, and defect density. Importantly, the dominance of surface interactions allows double gyroids, which are achiral in the bulk, to support strong circular dichroism responses withg‐factor magnitudes as large as 0.25.
more »
« less
Integration of Optical Surface Structures with Chiral Nanocellulose for Enhanced Chiroptical Properties
Abstract The integration of chiral organization with photonic structures found in many living creatures enables unique chiral photonic structures with a combination of selective light reflection, light propagation, and circular dichroism. Inspired by these natural integrated nanostructures, hierarchical chiroptical systems that combine imprinted surface optical structures with the natural chiral organization of cellulose nanocrystals are fabricated. Different periodic photonic surface structures with rich diffraction phenomena, including various optical gratings and microlenses, are replicated into nanocellulose film surfaces over large areas. The resulting films with embedded optical elements exhibit vivid, controllable structural coloration combined with highly asymmetric broadband circular dichroism and a microfocusing capability not typically found in traditional photonic bioderived materials without compromising their mechanical strength. The strategy of imprinting surface optical structures onto chiral biomaterials facilitates a range of prospective photonic applications, including stereoscopic displays, polarization encoding, chiral polarizers, and colorimetric chiral biosensing.
more »
« less
- Award ID(s):
- 1803495
- PAR ID:
- 10448295
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 32
- Issue:
- 2
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Natural polymers, particularly plant‐derived nanocelluloses, self‐organize into hierarchical structures, enabling mechanical robustness, bright iridescence, emission, and polarized light reflection. These biophotonic properties are facilitated by the assembly of individual components during evaporation, such as cellulose nanocrystals (CNCs), which exhibit a left‐handed helical pitch in a chiral nematic state. This work demonstrates how optically active films with pre‐programmed opposite handedness (left or right) can be constructed via shear‐induced twisted printing with clockwise and counter‐clockwise shearing vectors. The resulting large‐area thin films are transparent yet exhibit pre‐determined mirror‐symmetrical optical activity, enabling the distinction of absorbed and emitted circularly polarized light. This processing method allows for sequential printing of thin and ultrathin films with twisted layered organization and on‐demand helicity. The complex light polarization behavior is due to step‐like changes in linear birefringence within each deposited layer and circular birefringence, different from that of conventional CNC films as revealed with Muller matrix analysis. Furthermore, intercalating an achiral organic dye into printed structures induces circularly polarized luminescence while preserving high transmittance and controlled handedness. These results suggest that twisted sequential printing can facilitate the construction of chiroptical metamaterials with tunable circular polarization, absorption, and emission for optical filters, encryption, photonic coatings, and chiral sensors.more » « less
-
Abstract In two-dimensional chiral metal-halide perovskites, chiral organic spacers endow structural and optical chirality to the metal-halide sublattice, enabling exquisite control of light, charge, and electron spin. The chiroptical properties of metal-halide perovskites have been measured by transmissive circular dichroism spectroscopy, which necessitates thin-film samples. Here, by developing a reflection-based approach, we characterize the intrinsic, circular polarization-dependent complex refractive index for a prototypical two-dimensional chiral lead-bromide perovskite and report large circular dichroism for single crystals. Comparison with ab initio theory reveals the large circular dichroism arises from the inorganic sublattice rather than the chiral ligand and is an excitonic phenomenon driven by electron-hole exchange interactions, which breaks the degeneracy of transitions between Rashba-Dresselhaus-split bands, resulting in a Cotton effect. Our study suggests that previous data for spin-coated films largely underestimate the optical chirality and provides quantitative insights into the intrinsic optical properties of chiral perovskites for chiroptical and spintronic applications.more » « less
-
Abstract Incorporating photonic crystals with nanoplasmonic building blocks gives rise to novel optoelectronic properties that promise designing advanced multifunctional materials and electronics. Herein, the free‐standing chiral plasmonic composite films are designed by coassembling anisotropic plasmonic gold nanorods (GNRs) and rod‐like cellulose nanocrystals (CNCs). The effects of surface charge and concentration of the GNRs on the structure and optical properties of the CNC/GNR films are examined within this study. The CNC/GNR hybrid films retain the photonic characteristic of the CNCs host while concomitantly possessing the plasmonic resonance of GNRs. The negatively charged GNRs distribute uniformly in the layered CNCs host, inducing strong electrostatic repulsion among the CNCs and thus promoting the formation of a larger helical pitch than the case without GNRs. The positively charged GNRs decrease the chiroptical activity in the composite films with increasing the concentration of GNR, which is confirmed by the circular dichroism spectra. Notably, the surface plasmon resonances of GNRs enhance the fluorescence emission, which has been demonstrated by surface‐enhanced fluorescence signals in this work. This study sheds light on fabricating functional chiral plasmonic composite films with enhanced chiral plasmonics by utilizing CNCs as a dynamic chiral nematic template and adjusting surface charges.more » « less
-
Abstract Over the past two decades, metamaterials have led to an increasing number of biosensing and nanophotonic applications due to the possibility of a careful control of light propagating through subwavelength features. Chiral nanostructures (characterized by the absence of any mirror symmetry), in particular, give rise to unique chiro‐optical properties such as circular dichroism and optical activity. Here, a gyroid optical metamaterial with a periodicity of 65 nm exhibiting a strong circular dichroism at visible wavelengths is presented. This bottom‐up approach, based on metallic replication of the gyroid morphology in triblock terpolymer films, generates a large area of periodic optical metamaterials. A strong circular dichroism in gold and silver gyroid metamaterials at visible wavelengths is observed. It is shown that the circular dichroism is inherently linked to the handedness of the gyroid nanostructure and its tuneability is demonstrated. The optical effects are discussed and compared to other existing systems, showing the potential of bottom‐up approaches for large‐scale circular filters and chiral sensing.more » « less