skip to main content


Title: Chiral Perovskite Nanoplatelets with Tunable Circularly Polarized Luminescence in the Strong Confinement Regime
Abstract

Chiral perovskite nanocrystals have emerged as an interesting chiral excitonic platform that combines both structural flexibility and superior optoelectronic properties. Despite several recent demonstrations of optical activity in various chiral perovskite nanocrystals, efficient circularly polarized luminescence (CPL) with tunable energies remains a challenge. The chirality imprinting mechanism as a function of perovskite nanocrystal dimensionality remains elusive. Here, atomically thin inorganic perovskite nanoplatelets (NPLs) are synthesized with precise control of layer thickness and are functionalized by chiral surface ligands, serving as a unique platform to probe the chirality transfer mechanism at the organic/perovskite interface. It is found that chirality is successfully imprinted into mono‐, bi‐, and tri‐layer inorganic perovskite NPLs, exhibiting tunable circular dichroism (CD) and CPL responses. However, chirality transfer decreases in thicker NPLs, resulting in decreased CD and CPL dissymmetry factors for thicker NPLs. Aided by large‐scale first‐principles calculations, it is proposed that chirality transfer is mainly mediated through a surface distortion rather than a hybridization of electronic states, giving rise to symmetry breaking in the perovskite lattice and spin‐split conduction bands. The findings described here provide an in‐depth understanding of chirality transfer and design principles for distorted‐surface perovskites for chiral photonic applications.

 
more » « less
Award ID(s):
1729297
NSF-PAR ID:
10443515
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Optical Materials
Volume:
11
Issue:
12
ISSN:
2195-1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Metal halide perovskite nanocrystals (NCs) have emerged as highly promising light emitting materials for various applications, ranging from perovskite light‐emitting diodes (PeLEDs) to lasers and radiation detectors. While remarkable progress has been achieved in highly efficient and stable green, red, and infrared perovskite NCs, obtaining efficient and stable blue‐emitting perovskite NCs remains a great challenge. Here, a facile synthetic approach for the preparation of blue emitting CsPbBr3nanoplatelets (NPLs) with treatment by an organic sulfate is reported, 2,2‐(ethylenedioxy) bis(ethylammonium) sulfate (EDBESO4), which exhibit remarkably enhanced photoluminescence quantum efficiency (PLQE) and stability as compared to pristine CsPbBr3NPLs coated with oleylamines. The PLQE is improved from ≈28% for pristine CsPbBr3NPLs to 85% for EDBESO4treated CsPbBr3NPLs. Detailed structural characterizations reveal that EDBESO4treatment leads to surface passivation of CsPbBr3NPLs by both EDBE2+and SO42–ions, which helps to prevent the coalescence of NPLs and suppress the degradation of NPLs. A simple proof‐of‐concept device with emission peaked at 462 nm exhibits an external quantum efficiency of 1.77% with a luminance of 691 cd m−2and a half‐lifetime of 20 min, which represents one of the brightest pure blue PeLEDs based on NPLs reported to date.

     
    more » « less
  2. Post-synthetic phase transfer ligand exchange has been established as a simple, reliable, and versatile method for the synthesis of chiral, optically active colloidal nanocrystals displaying circular dichroism (CD) and circularly polarized luminescence (CPL). Herein we present a water-free and purification-free cyclohexane → methanol ligand exchange system that led to the synthesis of stable, non-aggregating chiral and fluorescent cadmium sulfide quantum dots (CdS QDs). Absorption and emission studies revealed that the carboxylate capping ligands can tune the band gap by up to 65 meV as well as control the band gap and deep trap emission pathways. The CD data revealed that the addition of a 2nd stereogenic center did not automatically lead to an increase of the CD anisotropy of QDs, but rather match/mismatch cooperativity effects must be considered in the transfer of the chirality from the capping ligands to the achiral nanocrystals. Variation in position of the functional groups as well as the chemical identity of the functional groups impacted both the shape and anisotropy of the induced CD spectra and revealed the importance of the functional groups’ coordination and polarity on the binding geometry and induced chiroptical properties. Finally, we describe the first example where CD spectra of QDs capped with the same ligand and dissolved in the same solvent displayed very different spectral profiles. This work provides deeper insight into induced CD of QDs and paves the path to rational design of chiral nanomaterials. 
    more » « less
  3. Abstract

    Translation of chirality and asymmetry across structural motifs and length scales plays a fundamental role in nature, enabling unique functionalities in contexts ranging from biological systems to synthetic materials. Here, we introduce a structural chirality transfer across the organic–inorganic interface in two-dimensional hybrid perovskites using appropriate chiral organic cations. The preferred molecular configuration of the chiral spacer cations,R-(+)- orS-(−)-1-(1-naphthyl)ethylammonium and their asymmetric hydrogen-bonding interactions with lead bromide-based layers cause symmetry-breaking helical distortions in the inorganic layers, otherwise absent when employing a racemic mixture of organic spacers. First-principles modeling predicts a substantial bulk Rashba-Dresselhaus spin-splitting in the inorganic-derived conduction band with opposite spin textures betweenR- andS-hybrids due to the broken inversion symmetry and strong spin-orbit coupling. The ability to break symmetry using chirality transfer from one structural unit to another provides a synthetic design paradigm for emergent properties, including Rashba-Dresselhaus spin-polarization for hybrid perovskite spintronics and related applications.

     
    more » « less
  4. Abstract

    A few unit cells of thick colloidal CsPbBr3nanoplatelets (NPLs) exhibit strong quantum confinement. However, due to the increased surface‐to‐volume ratio, they show poor photoluminescence quantum yield (PLQY) resulting from surface traps. Here, a unique, quantum‐confined core/crown perovskite is reported for the first time, where the CsPbBr3NPL surface is passivated by laterally grown thin FAPbBr3crown layers. Unlike regular core/shells, the FAPbBr3is coated around the core NPLs resulting in blue emission. Careful control of the growth kinetics while monitoring growth using in situ PL led to the formation of core/crown perovskites with nearly two times improvement in thin film PLQYs. HR‐TEM analyses show that the interplanar distances of the core match with CsPbBr3and the crown match with FAPbBr3. The XRD and TEM analyses revealed that their thickness remains the same even if Cs+to FA+ratios are varied, indicating lateral growth of FAPbBr3around the CsPbBr3core. Further, FA+ions in the crown lattice are confirmed by FTIR and1HNMR. Finally, considering their high PLQYs and narrow linewidths, the core/crown NPLs are employed as blue emitters in light‐emitting diodes, and a maximum external quantum efficiency of 0.4% at 2.71 eV (457 nm) with a luminance of 513 cd m−2is achieved.

     
    more » « less
  5. Abstract

    The vast majority of nanomaterials studied in light of their ability to transmit chirality to or amplify their chirality in a surrounding medium, constitute an achiral core with chirality solely installed at the surface by conjugation or encapsulation with optically active ligands. Here we present the inverse approach focusing on surface‐modified cellulose nanocrystals (CNCs) with core chirality at both the molecular and the morphological level to quantify transmission and amplification of core chirality through space using a host nematic liquid crystal (N‐LC) as reporter. We find that CNCs functionalized at the surface with achiral molecules, structurally related to the N‐LC, exhibit better N‐LC solubility, thereby serving as highly efficient chiral inducers. Moreover, functionalization with chiral molecules only marginally enhances the efficacy of helical distortion in the host N‐LC matrix, indicating the high propensity of CNCs to transfer chirality from an inherently chiral core.

     
    more » « less