Ultrafast lattice deformation of tens to hundreds of nanometer thick metallic crystals, after femtosecond laser excitation, was measured directly using 8.04 keV subpicosecond x-ray and 59 keV femtosecond electron pulses. Coherent phonons were generated in both single crystal and polycrystalline films. Lattice compression was observed within the first few picoseconds after laser irradiation in single crystal aluminum, which was attributed to the generation of a blast force and the propagation of elastic waves. The different time scales of lattice heating for tens and hundreds nanometer thick films are clearly distinguished by electron and x-ray pulse diffraction. The electron and lattice heating due to ultrafast deposition of photon energy was simulated using the two-temperature model and the results agreed with experimental observations. This study demonstrates that the combination of two complementary ultrafast time-resolved methods, ultrafast x-ray, and electron diffraction will provide a panoramic picture of the transient structural changes in crystals.
more »
« less
Ultrafast, Non‐Equilibrium and Transient Heating and Sintering of Nanocrystals for Nanoscale Metal Printing
Abstract The carrier excitation, relaxation, energy transport, and conversion processes during light‐nanocrystal (NC) interactions have been intensively investigated for applications in optoelectronics, photocatalysis, and photovoltaics. However, there are limited studies on the non‐equilibrium heating under relatively high laser excitation that leads to NCs sintering. Here, the authors use femtosecond laser two‐pulse correlation and in‐situ optical transmission probing to investigate the non‐equilibrium heating of NCs and transient sintering dynamics. First, a two‐pulse correlation study reveals that the sintering rate strongly increases when the two heating laser pulses are temporally separated by <10 ps. Second, the sintering rate is found to increase nonlinearly with laser fluence when heating with ≈700 fs laser pulses. By three‐temperature modeling, the NC sintering mechanism mediated by electron induced ligand transformation is suggested. The ultrafast and non‐equilibrium process facilitates sintering in dry (spin‐coated) and wet (solvent suspended) environments. The nonlinear dependence of sintering rate on laser fluence is exploited to print sub‐diffraction‐limited features in NC suspension. The smallest feature printed is ≈200 nm, which is ≈¼ of the laser wavelength. These findings provide a new perspective toward nanomanufacturing development based on probing and engineering ultrafast transport phenomena in functional NCs.
more »
« less
- PAR ID:
- 10448300
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Small
- Volume:
- 17
- Issue:
- 50
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We report a method for the phase reconstruction of an ultrashort laser pulse based on the deep learning of the nonlinear spectral changes induce by self-phase modulation. The neural networks were trained on simulated pulses with random initial phases and spectra, with pulse durations between 8.5 and 65 fs. The reconstruction is valid with moderate spectral resolution, and is robust to noise. The method was validated on experimental data produced from an ultrafast laser system, where near real-time phase reconstructions were performed. This method can be used in systems with known linear and nonlinear responses, even when the fluence is not known, making this method ideal for difficult to measure beams such as the high energy, large aperture beams produced in petawatt systems.more » « less
-
Ultrashort light pulses can selectively excite charges, spins, and phonons in materials, providing a powerful approach for manipulating their properties. Here we use femtosecond laser pulses to coherently manipulate the electron and phonon distributions, and their couplings, in the charge-density wave (CDW) material 1T-TaSe2. After exciting the material with a femtosecond pulse, fast spatial smearing of the laser-excited electrons launches a coherent lattice breathing mode, which in turn modulates the electron temperature. This finding is in contrast to all previous observations in multiple materials to date, where the electron temperature decreases monotonically via electron–phonon scattering. By tuning the laser fluence, the magnitude of the electron temperature modulation changes from ∼200 K in the case of weak excitation, to ∼1,000 K for strong laser excitation. We also observe a phase change of π in the electron temperature modulation at a critical fluence of 0.7 mJ/cm2, which suggests a switching of the dominant coupling mechanism between the coherent phonon and electrons. Our approach opens up routes for coherently manipulating the interactions and properties of two-dimensional and other quantum materials using light.more » « less
-
As a branch of laser powder bed fusion, selective laser sintering (SLS) with femtosecond (fs) lasers and metal nanoparticles (NPs) can achieve high precision and dense submicron features with reduced residual stress, due to the extremely short pulse duration. Successful sintering of metal NPs with fs laser is challenging due to the ablation caused by hot electron effects. In this study, a double-pulse sintering strategy with a pair of time- delayed fs-laser pulses is proposed for controlling the electron temperature while still maintaining a high enough lattice temperature. We demonstrate that when delay time is slightly longer than the electron-phonon coupling time of Cu NPs, the ablation area was drastically reduced and the power window for successful sintering was extended by about two times. Simultaneously, the heat-affected zone can be reduced by 66% (area). This new strategy can be adopted for all the SLS processes with fs laser and unlock the power of SLS with fs lasers for future applications.more » « less
-
Abstract This study examines burst laser-induced pitting (BLIP), an understudied surface modification phenomenon driven by ultrafast laser bursts with sub-picosecond to picosecond inter-pulse delays. Through SEM and AFM analysis, we characterize BLIP as sub-micron pits with polarizationdependent oval shapes, alongside high-fluence melting zones and localized ripple-like structures. Unlike conventional LIPSS, BLIP demonstrates exceptional energy coupling efficiency, evidenced by 10× greater damage areas and a steeper fluence-scaling expansion rate than LIPSS, attributed to transient carrier-mediated processes. Pit density decays exponentially with delay (τ ≈ 6.6-8.9 ps), matching the timescale of self-trapped exciton (STE) relaxation, while spatial statistics reveal a delay-driven transition from field-guided ordering (1-5 ps) to randomized distributions (>10 ps). The resonant-like angular distributions and delay-dependent ellipticity reduction indicate competing mechanisms: optical field enhancement dominates at short delays, while energy dissipation and structure disordering prevail at longer delays. Simulation of nanoplasma excitation reveals near-field optical field enhancements responsible for the ellipticity and ripple-like structures. Beyond their fundamental significance, these BLIP nanostructures offer practical functionalities, including use as anti-reflection coatings and hydrophobic surfaces. These findings establish BLIP as a new paradigm in ultrafast laser-material interactions, where burst parameters selectively activate defect-mediated or field-driven modification pathways in dielectrics.more » « less
An official website of the United States government
