skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coherent modulation of the electron temperature and electron–phonon couplings in a 2D material
Ultrashort light pulses can selectively excite charges, spins, and phonons in materials, providing a powerful approach for manipulating their properties. Here we use femtosecond laser pulses to coherently manipulate the electron and phonon distributions, and their couplings, in the charge-density wave (CDW) material 1T-TaSe2. After exciting the material with a femtosecond pulse, fast spatial smearing of the laser-excited electrons launches a coherent lattice breathing mode, which in turn modulates the electron temperature. This finding is in contrast to all previous observations in multiple materials to date, where the electron temperature decreases monotonically via electron–phonon scattering. By tuning the laser fluence, the magnitude of the electron temperature modulation changes from ∼200 K in the case of weak excitation, to ∼1,000 K for strong laser excitation. We also observe a phase change of π in the electron temperature modulation at a critical fluence of 0.7 mJ/cm2, which suggests a switching of the dominant coupling mechanism between the coherent phonon and electrons. Our approach opens up routes for coherently manipulating the interactions and properties of two-dimensional and other quantum materials using light.  more » « less
Award ID(s):
1734006
PAR ID:
10142871
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
16
ISSN:
0027-8424
Page Range / eLocation ID:
p. 8788-8793
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Femtosecond photoexcitation of Ba(Fe0.92Co0.08)2As2superconductors reveals distinct dynamics of laser fluence-dependent ultrafast processes. The modified two-temperature model shows the complex interplay between thermalization time constants, electron-phonon coupling parameters, and level of optical excitation. 
    more » « less
  2. Abstract Ultrafast laser excitation provides a means to transiently realize long-range ordered electronic states of matter that are hidden in thermal equilibrium. Recently, this approach has unveiled a variety of thermally inaccessible ordered states in strongly correlated materials, including charge density wave, ferroelectric, magnetic, and intertwined charge-orbital ordered states. However, more exotic hidden states exhibiting higher multipolar ordering remain elusive owing to the challenge of directly manipulating and detecting them with light. Here we demonstrate a method to induce a dynamical transition from a thermally allowed to a thermally forbidden spin-orbit entangled quadrupolar ordered state in Ca2RuO4by coherently exciting a phonon that is strongly coupled to the order parameter. Combining probe photon energy-resolved coherent phonon spectroscopy measurements with model Hamiltonian calculations, we show that the dynamical transition is manifested through anomalies in the temperature, pump excitation fluence, and probe photon energy dependence of the strongly coupled phonon. With this procedure, we introduce a general pathway to uncover hidden multipolar ordered states and to control their re-orientation on ultrashort timescales. 
    more » « less
  3. Abstract The carrier excitation, relaxation, energy transport, and conversion processes during light‐nanocrystal (NC) interactions have been intensively investigated for applications in optoelectronics, photocatalysis, and photovoltaics. However, there are limited studies on the non‐equilibrium heating under relatively high laser excitation that leads to NCs sintering. Here, the authors use femtosecond laser two‐pulse correlation and in‐situ optical transmission probing to investigate the non‐equilibrium heating of NCs and transient sintering dynamics. First, a two‐pulse correlation study reveals that the sintering rate strongly increases when the two heating laser pulses are temporally separated by <10 ps. Second, the sintering rate is found to increase nonlinearly with laser fluence when heating with ≈700 fs laser pulses. By three‐temperature modeling, the NC sintering mechanism mediated by electron induced ligand transformation is suggested. The ultrafast and non‐equilibrium process facilitates sintering in dry (spin‐coated) and wet (solvent suspended) environments. The nonlinear dependence of sintering rate on laser fluence is exploited to print sub‐diffraction‐limited features in NC suspension. The smallest feature printed is ≈200 nm, which is ≈¼ of the laser wavelength. These findings provide a new perspective toward nanomanufacturing development based on probing and engineering ultrafast transport phenomena in functional NCs. 
    more » « less
  4. Metals exhibit nonequilibrium electron and lattice subsystems at transient times following femtosecond laser excitation. In the past four decades, various optical spectroscopy and time-resolved diffraction methods have been used to study electron–phonon coupling and the effects of underlying dynamical processes. Here, we take advantage of the surface specificity of reflection ultrafast electron diffraction (UED) to examine the structural dynamics of photoexcited metal surfaces, which are apparently slower in recovery than predicted by thermal diffusion from the profile of absorbed energy. Fast diffusion of hot electrons is found to critically reduce surface excitation and affect the temporal dependence of the increased atomic motions on not only the ultrashort but also sub-nanosecond times. Whereas the two-temperature model with the accepted physical constants of platinum can reproduce the observed surface lattice dynamics, gold is found to exhibit appreciably larger-than-expected dynamic vibrational amplitudes of surface atoms while keeping the commonly used electron–phonon coupling constant. Such surface behavioral difference at transient times can be understood in the context of the different strengths of binding to surface atoms for the two metals. In addition, with the quantitative agreements between diffraction and theoretical results, we provide convincing evidence that surface structural dynamics can be reliably obtained by reflection UED even in the presence of laser-induced transient electric fields. 
    more » « less
  5. Molecular materials offer a boundless design palette for light absorption and charge transport in both natural photosynthesis and engineered photovoltaics. They function in combination as chromophores, donors, conductors, and acceptors, enabling the excitation and charge carrier transport through space and wire-like intramolecular pathways. Although quantum coher- ence is believed to enhance photoexcitation and photoinduced charge transfer, fluctuating and inhomogeneous environments accelerate decoherence. Here, we assemble a nanoporous medium consisting of a templated bipyridyl ethylene (BPE) molecule array on a Ag(111) surface that functions as an exceptional intermolecular nonnuclear quantum well conductor of coherent electron waves spanning over 20 Å length. Time-periodic driving of the Ag/BPE interface by femtosecond pulses promotes electrons into a ladder of Floquet quasi-energy donor states, where intermolecular quantum well states act as a resonant doorway for coherent electron transport into BPE/vacuum image potential acceptor states. The bifurcation of electron passage between the Floquet donor ladder and the charge transfer acceptor channel is recorded by projecting the active electrons into the photoemission continuum in an interferometric time- and angle-resolved multiphoton photoemission experiment. We find that exceptional decoupling of electrons from the metal substrate by the molecule- dressed vacuum preserves the coherence on the ∼150 fs time scale. This offers a new paradigm for quantum state design where a molecule-dressed vacuum mediates coherent electron transport in nanoporous molecular architectures. 
    more » « less