Tropical easterly waves (TEWs) are westward-moving waves often within trade winds but occur ubiquitously in the tropics and play a significant role in the genesis of tropical cyclones (TCs). They are well-known as primary precursors of TCs in the Atlantic, yet their global relationship with TCs has been less explored. This study, for the first time, presents the global distribution of TEW activity using a combined thermodynamic and dynamic framework based on 6-hourly Outgoing Longwave Radiation and curvature vorticity. We then demonstrate that TEWs play a dominant role in approximately 22–71% of global TC genesis, with their highest impacts in the North Atlantic (71%) and Western Pacific (54%). We further identify that TEWs, in their general coupling with TC genesis dynamics, act to intensify TC convection and vorticity in all TC main development regions, albeit the vorticity enhancement is relatively weaker in the North Atlantic. To understand the cross-basin differences in this general TEW-TC relationship, we further investigated background conditions for TC genesis in each basin and found an additional dry environment constraint in the Atlantic TC genesis, yet still delineating the critical role of TEWs in TC development. 
                        more » 
                        « less   
                    
                            
                            Evolving Tropical Cyclone Tracks in the North Atlantic in a Warming Climate
                        
                    
    
            Abstract Tropical cyclone (TC) track characteristics in a changing climate remain uncertain. Here, we investigate the genesis, tracks, and termination of >35,000 synthetic TCs traveling within 250 km of New York City (NYC) from the pre‐industrial era (850–1800 CE) to the modern era (1970–2005 CE) to the future (2080–2100 CE). Under a very high‐emissions scenario (RCP8.5), TCs are more likely to form closer to the United States (U.S.) southeast coast (>15% increase), terminate in the northeastern Atlantic (>6% increase), and move most slowly along the U.S. Atlantic coast (>15% increase) from the pre‐industrial to future. Under our modeled scenarios, TCs are more likely to travel within 100 km of Boston, MA, USA (p = 0.01) and Norfolk, VA, USA (p = 0.05) than within 100 km of NYC in the future. We identify reductions in the time between genesis and the time when TCs come within 100 km of NYC, Boston, or Norfolk, as well as increased duration of TC impacts from individual storms at all three cities in the future. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1663807
- PAR ID:
- 10448395
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Earth's Future
- Volume:
- 9
- Issue:
- 12
- ISSN:
- 2328-4277
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract El Niño–Southern Oscillation (ENSO) influences seasonal Atlantic tropical cyclone (TC) activity by impacting environmental conditions important for TC genesis. However, the influence of future climate change on the teleconnection between ENSO and Atlantic TCs is uncertain, as climate change is expected to impact both ENSO and the mean climate state. We used the Weather Research and Forecasting Model on a tropical channel domain to simulate 5-member ensembles of Atlantic TC seasons in historical and future climates under different ENSO conditions. Experiments were forced with idealized sea surface temperature configurations based on the Community Earth System Model (CESM) Large Ensemble representing: a monthly varying climatology, eastern Pacific El Niño, central Pacific El Niño, and La Niña. The historical simulations produced fewer Atlantic TCs during eastern Pacific El Niño compared to central Pacific El Niño, consistent with observations and other modeling studies. For each ENSO state, the future simulations produced a similar teleconnection with Atlantic TCs as in the historical simulations. Specifically, La Niña continues to enhance Atlantic TC activity, and El Niño continues to suppress Atlantic TCs, with greater suppression during eastern Pacific El Niño compared to central Pacific El Niño. In addition, we found a decrease in the Atlantic TC frequency in the future relative to historical regardless of ENSO state, which was associated with a future increase in northern tropical Atlantic vertical wind shear and a future decrease in the zonal tropical Pacific sea surface temperature (SST) gradient, corresponding to a more El Niño–like mean climate state. Our results indicate that ENSO will remain useful for seasonal Atlantic TC prediction in the future.more » « less
- 
            Tropical cyclone (TC) models indicate that continued planet warming will likely increase the global proportion of powerful TCs (specifically Categories 4 and 5 hurricanes), increasingly jeopardizing low-lying coastal communities and resources such as the Pelican Cays, Belize. The combination of increased coastal development and continued relative sea-level rise puts these communities at even higher risk of damage from TCs. The short TC observational record for the western Caribbean hampers the extensive study of TC activity on centennial timescales, which hinders our ability to fully understand past TC climatology and improve the accuracy of TC models. To better assess TC risk, paleotempestological studies are necessary to put future scenarios in perspective. Here, we present a high-resolution reconstruction of coarser-grained sediment deposits associated with TC (predominately ≥ Category 2 hurricanes) passages over the past 1200 years from Elbow and Lagoon Cays, two coral reef-bounded lagoons at the northern and southern end of the Pelican Cays; the most southern Belizean paleotempestological site to date. Coincident timing of historic storms with statistically significant coarser-grained deposits within cay lagoon sediment cores allows us to determine which historic TCs likely generated event layers (tempestites) archived in the sediment record. Our compilation frequency analysis indicates one active interval (above-normal TC activity) from 1740-1950 CE and one quiet interval (below-normal TC activity) from 850-1018 CE. The active and quiet intervals in the Pelican Cays composite record are anticorrelated with those from nearby and re-analyzed TC records to the north, including the Great Blue Hole (∼100 km north) and the Northeast Yucatan (∼380 km northwest). This site-specific anticorrelation in TC activity along the western Caribbean indicates that we cannot rely on any one single TC record to represent regional TC activity. However, we cannot discount that these anticorrelated periods between the western Caribbean sites are due to randomness. To confirm that the anticorrelation in TC activity among sites from the western Caribbean is indeed a function of climate change and not randomness, an integration of more records and TC model simulations over the past millennium is necessary to assess the significance of centennial-scale variability in TC activity recorded in reconstructions from the western Caribbean.more » « less
- 
            Abstract Sea-level rise is a significant indicator of broader climate changes, and the time of emergence concept can be used to identify when modern rates of sea-level rise emerged above background variability. Yet a range of estimates of the timing persists both globally and regionally. Here, we use a global database of proxy sea-level records of the Common Era (0–2000 CE) and show that globally, it is very likely that rates of sea-level rise emerged above pre-industrial rates by 1863 CE (P= 0.9; range of 1825 [P= 0.66] to 1873 CE [P= 0.95]), which is similar in timing to evidence for early ocean warming and glacier melt. The time of emergence in the North Atlantic reveals a distinct spatial pattern, appearing earliest in the mid-Atlantic region (1872–1894 CE) and later in Canada and Europe (1930–1964 CE). Regional and local sea-level changes occurring over different time periods drive the spatial pattern in emergence, suggesting regional processes underlie centennial-timescale sea-level variability over the Common Era.more » « less
- 
            The impacts of inland flooding caused by tropical cyclones (TCs), including loss of life, infrastructure disruption, and alteration of natural landscapes, have increased over recent decades. While these impacts are well documented, changes in TC precipitation extremes—the proximate cause of such inland flooding—have been more difficult to detect. Here, we present a latewood tree-ring–based record of seasonal (June 1 through October 15) TC precipitation sums (ΣTCP) from the region in North America that receives the most ΣTCP: coastal North and South Carolina. Our 319-y-long ΣTCP reconstruction reveals that ΣTCP extremes (≥0.95 quantile) have increased by 2 to 4 mm/decade since 1700 CE, with most of the increase occurring in the last 60 y. Consistent with the hypothesis that TCs are moving slower under anthropogenic climate change, we show that seasonal ΣTCP along the US East Coast are positively related to seasonal average TC duration and TC translation speed.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
