Abstract There is great uncertainty in the atmospheric circulation response to future Arctic sea ice loss, with some models predicting a shift towards the negative phase of the North Atlantic Oscillation (NAO), while others predicting a more neutral NAO response. We investigate the potential role of systematic model biases in the spread of these responses by modifying the unperturbed (or ‘control’) climate (hereafter referred to as the ‘basic state’) of the Canadian Earth system model version 5 (CanESM5) in sea ice loss experiments based on the protocol of the Polar Amplification Model Intercomparison Project. We show that the presence or absence of the stratospheric pathway in response to sea ice loss depends on the basic state, and that only the CanESM5 version that shows a weakening of the stratospheric polar vortex features a strong negative NAO response. We propose a mechanism that explains this dependency, with a key role played by the vertical structure of the winds in the region between the subtropical jet and the stratospheric polar vortex (‘the neck region winds’), which determines the extent to which anomalous planetary wave activity in response to sea ice loss propagates away from the polar vortex. Our results suggest that differences in the models’ basic states could significantly contribute to model spread in the simulated atmospheric circulation response to sea ice loss, which may inform efforts to narrow the uncertainties regarding the impact of diminishing sea ice on mid-latitude climate.
more »
« less
Intermodel Spread in the Northern Hemisphere Stratospheric Polar Vortex Response to Climate Change in the CMIP5 Models
Abstract This study investigates the intermodel spread of the Northern Hemisphere winter stratospheric polar vortex change to anthropogenic greenhouse gas increase in Coupled Model Intercomparison Project Phase 5 (CMIP5) models. Previous proposed mechanisms for the polar vortex response to climate change, based on analysis of atmosphere‐only models, are found inadequate to explain the intermodel spread in the coupled models in CMIP5. It is further found that resolved stationary wave driving in the polar vortex region accounts for less than 30% of the intermodel spread, and intermodel differences in both the vertical and meridional wave propagation contribute to differences in the wave driving. The results call for a detailed budget analysis of the stratospheric circulation response by including both the resolved and parameterized processes through the Dynamics and Variability Model Intercomparison Project. The results also highlight a need for an improved theoretical understanding of future projected polar vortex change and intermodel spread.
more »
« less
- Award ID(s):
- 1734760
- PAR ID:
- 10448430
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 46
- Issue:
- 22
- ISSN:
- 0094-8276
- Page Range / eLocation ID:
- p. 13290-13298
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Major sudden stratospheric warmings (SSWs), vortex formation, and final breakdown dates are key highlight points of the stratospheric polar vortex. These phenomena are relevant for stratosphere‐troposphere coupling, which explains the interest in understanding their future changes. However, up to now, there is not a clear consensus on which projected changes to the polar vortex are robust, particularly in the Northern Hemisphere, possibly due to short data record or relatively moderate CO2forcing. The new simulations performed under the Coupled Model Intercomparison Project, Phase 6, together with the long daily data requirements of the DynVarMIP project in preindustrial and quadrupled CO2(4xCO2) forcing simulations provide a new opportunity to revisit this topic by overcoming the limitations mentioned above. In this study, we analyze this new model output to document the change, if any, in the frequency of SSWs under 4xCO2forcing. Our analysis reveals a large disagreement across the models as to the sign of this change, even though most models show a statistically significant change. As for the near‐surface response to SSWs, the models, however, are in good agreement as to this signal over the North Atlantic: There is no indication of a change under 4xCO2forcing. Over the Pacific, however, the change is more uncertain, with some indication that there will be a larger mean response. Finally, the models show robust changes to the seasonal cycle in the stratosphere. Specifically, we find a longer duration of the stratospheric polar vortex and thus a longer season of stratosphere‐troposphere coupling.more » « less
-
As a step towards understanding the fundamental drivers of polar climate change, we evaluate contributions to polar warming and its seasonal and hemispheric asymmetries in Coupled Model Intercomparison Project phase 6 (CMIP6) as compared with CMIP5. CMIP6 models broadly capture the observed pattern of surface- and winter-dominated Arctic warming that has outpaced both tropical and Antarctic warming in recent decades. For both CMIP5 and CMIP6, CO 2 quadrupling experiments reveal that the lapse-rate and surface albedo feedbacks contribute most to stronger warming in the Arctic than the tropics or Antarctic. The relative strength of the polar surface albedo feedback in comparison to the lapse-rate feedback is sensitive to the choice of radiative kernel, and the albedo feedback contributes most to intermodel spread in polar warming at both poles. By separately calculating moist and dry atmospheric heat transport, we show that increased poleward moisture transport is another important driver of Arctic amplification and the largest contributor to projected Antarctic warming. Seasonal ocean heat storage and winter-amplified temperature feedbacks contribute most to the winter peak in warming in the Arctic and a weaker winter peak in the Antarctic. In comparison with CMIP5, stronger polar warming in CMIP6 results from a larger surface albedo feedback at both poles, combined with less-negative cloud feedbacks in the Arctic and increased poleward moisture transport in the Antarctic. However, normalizing by the global-mean surface warming yields a similar degree of Arctic amplification and only slightly increased Antarctic amplification in CMIP6 compared to CMIP5.more » « less
-
null (Ed.)Abstract Radiative feedbacks depend on the spatial patterns of sea surface temperature (SST) and thus can change over time as SST patterns evolve—the so-called pattern effect. This study investigates intermodel differences in the magnitude of the pattern effect and how these differences contribute to the spread in effective equilibrium climate sensitivity (ECS) within CMIP5 and CMIP6 models. Effective ECS in CMIP5 estimated from 150-yr-long abrupt4×CO2 simulations is on average 10% higher than that estimated from the early portion (first 50 years) of those simulations, which serves as an analog for historical warming; this difference is reduced to 7% on average in CMIP6. The (negative) net radiative feedback weakens over the course of the abrupt4×CO2 simulations in the vast majority of CMIP5 and CMIP6 models, but this weakening is less dramatic on average in CMIP6. For both ensembles, the total variance in the effective ECS is found to be dominated by the spread in radiative response on fast time scales, rather than the spread in feedback changes. Using Green’s functions derived from two AGCMs shows that the spread in feedbacks on fast time scales may be primarily due to differences in atmospheric model physics, whereas the spread in feedback evolution is primarily governed by differences in SST patterns. Intermodel spread in feedback evolution is well explained by differences in the relative warming in the west Pacific warm-pool regions for the CMIP5 models, but this relation fails to explain differences across the CMIP6 models, suggesting that a stronger sensitivity of extratropical clouds to surface warming may also contribute to feedback changes in CMIP6.more » « less
-
Abstract Tropical climate response to greenhouse warming is to first order symmetric about the equator but climate models disagree on the degree of latitudinal asymmetry of the tropical change. Intermodel spread in equatorial asymmetry of tropical climate response is investigated by using 37 models from phase 6 of the Coupled Model Intercomparison Project (CMIP6). In the simple simulation with CO2increase at 1% per year but without aerosol forcing, this study finds that intermodel spread in tropical asymmetry is tied to that in the extratropical surface heat flux change related to the Atlantic meridional overturning circulation (AMOC) and Southern Ocean sea ice concentration (SIC). AMOC or Southern Ocean SIC change alters net energy flux at the top of the atmosphere and sea surface in one hemisphere and may induce interhemispheric atmospheric energy transport. The negative feedback of the shallow meridional overturning circulation in the tropics and the positive low cloud feedback in the subtropics are also identified. Our results suggest that reducing the intermodel spread in extratropical change can improve the reliability of tropical climate projections.more » « less