skip to main content


Title: High‐level rather than low‐level warming destabilizes plant community biomass production
Abstract

Ecosystem stability is essential to its sustainable functions and services to humanity. Although climate warming is projected to vary from 1 to 5°C by the end of 21st century, how the temporal stability of plant community biomass production responds to different warming scenarios remains unclear.

To fill this knowledge gap, we conducted a 6‐year field experiment with three levels of warming treatments (control, +1.5°C, +2.5°C) by using infrared radiators, in an alpine meadow on the Qinghai–Tibet Plateau.

We found that low‐level warming (+1.5°C), compared to the control, did not significantly change the temporal stability of plant community biomass production and its underlying causes, including species diversity, compensatory dynamics, mean–variance scaling, biomass temporal stability of plant population (the average of temporal stability of species biomass production of all species in the community) or dominant species. However, high‐level warming (+2.5°C) significantly reduced them. Species diversity was not a significant predictor of temporal stability of plant community biomass production in this species‐rich ecosystem, regardless of the magnitude of warming, while co‐existing species compensatory dynamics and the biomass temporal stability of dominant species determined the response of temporal stability of plant community biomass production to warming.

Synthesis. Our results suggest that the responses of plant community biomass temporal stability and its underlying mechanisms to climate warming depend on warming magnitudes. The findings highlight the various responses of ecosystem functions and services to different warming scenarios and imply that ecosystem will fail to maintain and provide stable biomass‐related services for humanity under high‐level climate warming.

 
more » « less
Award ID(s):
1833988 1856318
PAR ID:
10448440
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Ecology
Volume:
109
Issue:
4
ISSN:
0022-0477
Page Range / eLocation ID:
p. 1607-1617
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The effect of species loss on ecosystem productivity is determined by both the functional contribution of the species lost, and the response of the remaining species in the community. According to the mass ratio hypothesis, the loss of a dominant plant species, which has a larger proportionate contribution to productivity, is expected to exert an overwhelming effect on this important ecosystem function. However, via competitive release, loss of a dominant species can provide the opportunity for other plant species to establish, thrive and become abundant in the community, potentially compensating for the function lost. Furthermore, if resource limitation is removed, then the compensatory response of function to the loss of a dominant species should be greater and more rapid than if resources are more limiting.

    To evaluate how resources may limit compensation of above‐ground productivity to the loss of a dominant plant species, we experimentally removed the C4perennial tallgrass,Andropogon gerardii, from intact plant communities. We added water for 4 years, as well as nitrogen in the fourth year, to test the effect of resource limitation on the compensatory response.

    Overall, above‐ground biomass production increased in the remaining community with both water and nitrogen addition. However, this increase in biomass production was not sufficient to fully compensate for the loss ofA. gerardii, indicating water and nitrogen were not limiting short‐term compensation in this community.

    Following the removal of the dominant species, there was reordering of species abundances in the community, rather than changes in species richness. The C4grassBouteloua curtipendulawas the most responsive species, increasing by 57.9% in abundance with water addition and 91.0% with both water and nitrogen addition. Despite this dramatic increase in abundance, its short stature and lower per capita biomass production prevented this species from compensating for the loss ofA. gerardii.

    Synthesis. Short‐term compensation after the loss of a dominant plant species can be hastened by increased resource availability, but ultimately full compensation appears to be limited by the presence and abundance of species in the remaining community that possess traits that allow them compensate for the species lost.

     
    more » « less
  2. Abstract

    As global temperatures continue to rise, assessment of how species within ecological communities respond to shifts in temperature has become increasingly important. However, such assessments require detailed long‐term observations or ecosystem‐level manipulations that allow for interactions among species and the potential for species dispersal and exchange with the regional species pool.

    We examined the effects of experimental whole‐stream warming on a larval black fly assemblage in southwest Iceland. We used a paired‐catchment design, in which we studied the warmed stream and a nearby reference stream for 1 year prior to warming and 2 years during warming and estimated population abundance, biomass, secondary production, and growth rates for larvae of three black fly species.

    Experimental warming by 3.8°C had contrasting effects on the three black fly species in the assemblage. The abundance, biomass, growth, and production ofProsimulium ursinumdecreased in the experimental stream during the warming manipulation. Despite increasing in the reference stream, the abundance, biomass, and production of another species,Simulium vernum, decreased in the experimental stream during warming.

    In contrast, warming had an overall positive effect onSimulium vittatum. While warming had little effect on the growth of overwintering cohorts ofS. vittatum, warming led to an additional cohort during the summer months and increased its abundance, biomass, and production. Overall, family‐level production was enhanced by warming, despite variation in species‐level responses.

    Our study illustrates that the effects of climate warming are likely to differ even among closely related species. Moreover, our study highlights the need for further investigation into the uneven effects of warming on individual species and how those variable effects influence food web dynamics and ecosystem function.

     
    more » « less
  3. Abstract

    Temporal variation in soil nitrogen (N) availability affects growth of grassland communities that differ in their use and reuse of N. In a 7‐year‐long climate change experiment in a semi‐arid grassland, the temporal stability of plant biomass production varied with plant N turnover (reliance on externally acquired N relative to internally recycled N). Species with high N turnover were less stable in time compared to species with low N turnover. In contrast, N turnover at the community level was positively associated with asynchrony in biomass production, which in turn increased community temporal stability. ElevatedCO2and summer irrigation, but not warming, enhanced community N turnover and stability, possibly because treatments promoted greater abundance of species with high N turnover. Our study highlights the importance of plant N turnover for determining the temporal stability of individual species and plant communities affected by climate change.

     
    more » « less
  4. Abstract

    Grasslands are subject to climate change, such as severe drought, and an important aspect of their functioning is temporal stability in response to extreme climate events. Previous research has explored the impacts of extreme drought and post‐drought periods on grassland stability, yet the mechanistic pathways behind these changes have rarely been studied.

    Here, we implemented an experiment with 4 years of drought and 3 years of recovery to assess the effects of drought and post‐drought on the temporal stability of above‐ground net primary productivity (ANPP) and its underlying mechanisms. To do so, we measured community‐weighted mean (CWM) of six plant growth and nine seed traits, functional diversity, population stability and species asynchrony across two cold, semiarid grasslands in northern China. We also performed piecewise structural equation models (SEMs) to assess the relationships between ANPP stability and its underlying mechanisms and how drought and post‐drought periods alter the relative contribution of these mechanisms to ANPP stability.

    We found that temporal stability of ANPP was not reduced during drought due to grasses maintaining productivity, which compensated for increased variation of forb productivity. Moreover, ANPP recovered rapidly after drought, and both grasses and forbs contributed to community stability during the post‐drought period. Overall, ANPP stability decreased during the combined drought and post‐drought periods because of rapid changes in ANPP from drought to post‐drought. SEMs revealed that the temporal stability of ANPP during drought and post‐drought periods was modulated by functional diversity and community‐weighted mean traits directly and indirectly by altering species asynchrony and population stability. Specifically, the temporal stability of ANPP was positively correlated with functional divergence of plant communities. CWMs of seed traits (e.g. seed width and thickness), rather than plant growth traits (e.g. specific leaf area and leaf nutrient content), stabilized grassland ANPP. Productivity of plant communities with large and thick seeds was less sensitive to precipitation changes over time.

    These results emphasize the importance of considering both the functional trait distribution among species and seed traits of dominant species since their combined effects can stabilize ecosystem functions under global climate change scenarios.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  5. Abstract

    Nutrient enrichment impacts grassland plant diversity such as species richness, functional trait composition and diversity, but whether and how these changes affect ecosystem stability in the face of increasing climate extremes remains largely unknown.

    We quantified the direct and diversity‐mediated effects of nutrient addition (by nitrogen, phosphorus, and potassium) on the stability of above‐ground biomass production in 10 long‐term grassland experimental sites. We measured five facets of stability as the temporal invariability, resistance during and recovery after extreme dry and wet growing seasons.

    Leaf traits (leaf carbon, nitrogen, phosphorus, potassium, and specific leaf area) were measured under ambient and nutrient addition conditions in the field and were used to construct the leaf economic spectrum (LES). We calculated functional trait composition and diversity of LES and of single leaf traits. We quantified the contribution of intraspecific trait shifts and species replacement to change in functional trait composition as responses to nutrient addition and its implications for ecosystem stability.

    Nutrient addition decreased functional trait diversity and drove grassland communities to the faster end of the LES primarily through intraspecific trait shifts, suggesting that intraspecific trait shifts should be included for accurately predicting ecosystem stability. Moreover, the change in functional trait diversity of the LES in turn influenced different facets of stability. That said, these diversity‐mediated effects were overall weak and/or overwhelmed by the direct effects of nutrient addition on stability. As a result, nutrient addition did not strongly impact any of the stability facets. These results were generally consistent using individual leaf traits but the dominant pathways differed. Importantly, major influencing pathways differed using average trait values extracted from global trait databases (e.g. TRY).

    Synthesis. Investigating changes in multiple facets of plant diversity and their impacts on multidimensional stability under global changes such as nutrient enrichment can improve our understanding of the processes and mechanisms maintaining ecosystem stability.

     
    more » « less