skip to main content


Title: FROM NEOS TO TNOS: HOW REGOLITH IS SHAPING THE SMALL WORLDS OF OUR SOLAR SYSTEM
Introduction: With the capture of the first high- resolution, in-situ images of Near-Earth Objects (NEOs) a couple of decades ago [1–4], the ubiquity of regolith and the granular nature of small objects in the Solar System became apparent. Benefiting from an increased access to high computing power, new numerical studies emerged, modeling granular structures forming and evolving as small bodies in the Solar System [5–7]. Now adding laboratory studies on granular material strength for asteroid and other small body applications [8,9], we are steadily progressing in our understanding of how regolith is shaping the interiors and surfaces of these worlds. In addition, our ever-more powerful observation capabilities are uncovering interesting dust-related phenomena in the outer skirts of our Solar System, in the form of activity at large heliocentric distances and rings [10–12]. We find that our recent progress in understanding the behavior of granular material in small body environments also has applications to the more distant worlds of Centaurs and Trans-Neptunian Objects (TNOs). Internal Strength: We currently deduce internal friction of rubble piles from the observation of large numbers of small asteroids and their rotation rates, combined with the associated numerical simulations [13,14]. In the laboratory, we study internal friction of simulant materials using shear strength measurements [8]. Combining observations, modeling, and laboratory work, the picture emerges of rubble pile interiors being composed of coarse grains in the mm to cm range. The irregular shapes of the grains lead to mechanical interlocking, thus generating the internal friction required to match observations of the asteroid population [8,9]. We find that the presence of a fine fraction in the confined interior of a rubble pile actually leads weaker internal strength [9]. Surface Strength: Deducing surface regolith strength for NEOs is usually performed via average slope measurements [15–17] or, most notably, observing the outcome of an impact of known energy [18]. In the laboratory, we measure the angle of repose of simulant material via pouring tests, as well as its bulk cohesion using shear strength measurements [8]. In some cases, this allows us to infer grain size ranges for various regions of the surface and subsurface of pictured NEOs, beyond the resolution of their in-situ images. Surface Activity: The Rosetta mission revealed that a number of activity events on comet 67P/Churyumov–Gerasimenko were linked to active surface geology, most notably avalanches and cliff collapses [19]. In addition, the role of regolith strength in asteroid disruption patterns has been inferred from numerical simulations of rotating rubble piles [20]. By studying strength differences in simulant samples, it becomes apparent that a difference in cohesion between a surface and its subsurface layer can lead to activity events with surface mass shedding, without the presence of volatiles sublimating as a driver [8]. We show that such differences in surface strength can be brought upon by a depletion in fine grains or a change in composition (e.g. depletion in water ice) and could account for regular activity patterns on small bodies, independently of their distance to the Sun. This is of particular interest to the study of Centaur activity and a potential mechanism for feeding ring systems.  more » « less
Award ID(s):
1830609
NSF-PAR ID:
10475060
Author(s) / Creator(s):
Publisher / Repository:
Lunar and Planetary Institute Contributions
Date Published:
Journal Name:
Asteroids, Comets, Meteors Conference 2023
Page Range / eLocation ID:
2851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Several lines of evidence indicate that most of the smaller asteroids (< 1 km) consist of granular material loosely bound together primarily by self-gravity; these are commonly called rubble piles. While the strength of these rubble piles is valuable information on their origin and fate, it is still debated in the literature. We report on a laboratory measurement campaign on fine-coarse mixtures of simulated asteroid regolith. In a series of table-top measurements, we have determined sample compression and shear strengths for various fine-fractions within coarse-grained samples. We used confined setups (less than 10cm in length) to measure the strength of the material in constricted environments such as an asteroid’s core and unconfined setups (greater than 10cm in length) to simulate open environments such as the surface of an asteroid. Using CI Orgeuil high fidelity asteroid soil simulant, we performed three measurement types to determine the strength of our samples: shear yield, which in turn provided values for the Angle of Internal Friction (AIF), bulk cohesion, and tensile strength of the samples; compression strength, which allowed to calculate the Young’s Modulus (YM); and the Angle Of Repose (AOR). From the AOR, we determined the coefficient of friction of each sample. Samples of regolith were created by measuring percentage by volume amounts of both coarse and fine grains into the measurement container. We prepared coarse grains in two size distributions, mm-sized and cm-sized. The fine fraction was composed of grains sieved between 100 and 250 μm. For compression and AOR measurements, we find that the strength of the coarse grain samples increases with the addition of a fine fraction. However, we find that the increase of the fine fraction in a sample of coarse grains does not consistently increase the sample shear strength. With increasing fine fractions, the AIF and bulk cohesion of the mixed samples decrease (until a point of saturation). This could be indicative of the fine grains acting as a lubricant as the larger grains move across each other, aiding rolling and reducing interlocking strength. Our findings suggest that in the case of the surface of an asteroid, the presence of fine grains does indeed increase the strength of coarse regolith material. However, fine grains in the regolith sublayers or the asteroid interior will reduce material strength due to grain interlocking and ease disruption. Therefore, rubble piles that are depleted in fine grains will have higher internal strength compared to those composed of grain size distributions that include sub-mm sized particles. 
    more » « less
  2. Abstract

    Most small asteroids are defined as “rubble piles” or bodies with zero tensile strength and large bulk porosity. The cohesive forces that hold them together act at the grain scale, and their magnitude is often estimated from similar materials when used in simulations. Improving the accuracy of predictions of asteroid strengths requires suitable laboratory measurements of relevant materials, as well as increasing the availability of materials from sample return. Atomic force microscopy (AFM) is well suited for force measurements relative to particle–particle interactions. In this work, we use AFM force measurements to evaluate the cohesive forces that act between micron-sized grains. We investigate the effect of the sizes of the interacting grains of JSC-1 lunar simulant using three sample sizes (<45, 75–125, and 125–250μm) and three spherical AFM tip diameters (2μm, 15μm, and 45μm). In all cases, adhesion forces were larger at ambient relative humidity (RH), where the water layer on the surface of the grains is more prominent, creating a larger meniscus between the tip and the grain upon contact. We observed weaker adhesion with larger grain/tip size, which can be attributed to the changing contact area between the samples and the tips. We expect that our approach will pave the way to a better understanding of regolith surface properties such as adhesion and cohesion and provide suitable input for models that can be used to predict the evolution of asteroids and their particle behaviors.

     
    more » « less
  3. Abstract The surfaces of many planetary bodies, including asteroids and small moons, are covered with dust to pebble-sized regolith held weakly to the surface by gravity and contact forces. Understanding the reaction of regolith to an external perturbation will allow for instruments, including sensors and anchoring mechanisms for use on such surfaces, to implement optimized design principles. We analyze the behavior of a flexible probe inserted into loose regolith simulant as a function of probe speed and ambient gravitational acceleration to explore the relevant dynamics. The EMPANADA experiment (Ejecta-Minimizing Protocols for Applications Needing Anchoring or Digging on Asteroids) flew on several parabolic flights. It employs a classic granular physics technique, photoelasticity, to quantify the dynamics of a flexible probe during its insertion into a system of bi-disperse, centimeter-sized model grains. We identify the force chain structure throughout the system during probe insertion at a variety of speeds and for four different levels of gravity: terrestrial, Martian, lunar, and microgravity. We identify discrete, stick-slip failure events that increase in frequency as a function of the gravitational acceleration. In microgravity environments, stick-slip behaviors are negligible, and we find that faster probe insertion can suppress stick-slip behaviors where they are present. We conclude that the mechanical response of regolith on rubble-pile asteroids is likely quite distinct from that found on larger planetary objects, and scaling terrestrial experiments to microgravity conditions may not capture the full physical dynamics. 
    more » « less
  4. Abstract

    Frictional sliding along grain boundaries in brittle shear zones can result in the fragmentation of individual grains, which ultimately can impact slip dynamics. During deformation at small scales, stick–slip motion can occur between grains when existing force chains break due to grain rearrangement or failure, resulting in frictional sliding of granular material. The rearrangement of the grains leads to dilation of the granular package, reducing the shear stress and subsequently leading to slip. Here, we conduct physical experiments employing HydroOrbs, an elasto-plastic material, to investigate grain comminution in granular media under simple shear conditions. Our findings demonstrate that the degree of grain comminution is dependent on both the normal force and the size of the grains. Using the experimental setup, we benchmark Discrete Element Method (DEM) numerical models, which are capable of simulating the movement, rotation, and fracturing of elasto-plastic grains subjected to simple shear. The DEM models successfully replicate both grain comminution patterns and horizontal force fluctuations observed in our physical experiments. They show that increasing normal forces correlate with higher horizontal forces and more fractured grains. The ability of our DEM models to accurately reproduce experimental results opens up new avenues for investigating various parameter spaces that may not be accessible through traditional laboratory experiments, for example, in assessing how internal friction or cohesion affect deformation in granular systems.

     
    more » « less
  5. Abstract

    We present an approach for the inclusion of nonspherical constituents in high-resolutionN-body discrete element method (DEM) simulations. We use aggregates composed of bonded spheres to model nonspherical components. Though the method may be applied more generally, we detail our implementation in the existingN-body codepkdgrav. It has long been acknowledged that nonspherical grains confer additional shear strength and resistance to flow when compared with spheres. As a result, we expect that rubble-pile asteroids will also exhibit these properties and may behave differently than comparable rubble piles composed of idealized spheres. Since spherical particles avoid some significant technical challenges, most DEM gravity codes have used only spherical particles or have been confined to relatively low resolutions. We also discuss the work that has gone into improving performance with nonspherical grains, building onpkdgrav's existing leading-edge computational efficiency among DEM gravity codes. This allows for the addition of nonspherical shapes while maintaining the efficiencies afforded bypkdgrav's tree implementation and parallelization. As a test, we simulated the gravitational collapse of 25,000 nonspherical bodies in parallel. In this case, the efficiency improvements allowed for an increase in speed by nearly a factor of 3 when compared with the naive implementation. Without these enhancements, large runs with nonspherical components would remain prohibitively expensive. Finally, we present the results of several small-scale tests: spin-up due to the YORP effect, tidal encounters, and the Brazil nut effect. In all cases, we find that the inclusion of nonspherical constituents has a measurable impact on simulation outcomes.

     
    more » « less