skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: Lived Experience of STEM Faculty Becoming Teacher Educators
This study employed an ethnographic qualitative research approach to examine the experiences of Science, Technology, Engineering, or Math (STEM) faculty who participated in a supplementary mentoring network, the National Science Foundation Noyce Scholarship program, for STEM pre-service teachers. The findings highlight the ways in which mentoring programs can positively impact faculty and the preparation of STEM pre-service teachers.  more » « less
Award ID(s):
2050397
PAR ID:
10448487
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Texas forum of teacher education
Volume:
13
ISSN:
2166-0190
Page Range / eLocation ID:
78-86
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mentoring is an important aspect of mathematics teacher education, and in particular, pre-service teacher education. Faculty at a large Midwestern university developed and refined a mentoring program designed to help pre-service secondary mathematics teachers, called Scholars, become future leaders in mathematics education. This paper describes how faculty mentors leveraged challenges in the mentoring program’s early stages based on their reflections and initial mentee outcomes to create a more effective mentoring program. Recommendations based on research and practice are provided for other university programs interested in mentoring future mathematics teachers. 
    more » « less
  2. The need for a comprehensive, high-quality pipeline for the development of undergraduate pre-service teachers, especially those that represent a diverse student body, within STEM disciplines is acute. Here, we studied the NoyceSCIENCE program to determine the most impactful experiences offered to undergraduates through the lens of student development theory. We used qualitative coding to analyze data collected from journals ( n = 29) written by students of varying backgrounds, and at varying levels within the program (i.e., the Scholar and Intern level) over a 3-year program running period. We observed that faculty mentorship, the ability of undergraduates to mentor others, volunteer experiences, and learning directly from experts had the greatest influence on student development overall. For Scholars that participate for more than 1 year in the program, access to undergraduate mentoring and volunteering experiences contributed most to student development. We posit that these findings are broadly applicable to other science learning communities and STEM content-focused teacher preparation programs as they are program components that can be integrated in isolation or in their entirety. 
    more » « less
  3. The United Nations Sustainable Development Goals (UN SDGs) are the focus for a Research Experience for Teachers (RET) Site in Engineering at X University. The relevant and meaningful contexts of the SDGs allow middle and high school teachers and their students to easily make connections between research in a university lab setting to Science, Technology, Engineering, and Math (STEM) concepts in their classroom. Lesson plans inspired by the UN SDGs research experience were developed as an “integrated STEM” problem solving activity by each of the RET teachers. Ten (10) teachers comprising of both pre-service and in-service middle or high school teachers have participated in each cohort over the two years of the NSF RET grant thus far. Six weeks of authentic summer research takes place in 5 different faculty labs at X University under the mentorship of faculty and their graduate students or postdoc. Examples of the research projects include “Photocatalysis for Clean Energy and Environment,” “Genetically Engineering Plasmid DNA molecules to address Tuberculosis Antibiotic Resistance,” and “New Water-Based Technology for Plastic Recycling.” RET participants also attend a weekly coffee session to help guide the teachers through the research process and a weekly ½-day professional development (PD) session to translate the research experience into a classroom lesson plan that aligns to state standards, as well as evidence-backed curriculum design and teaching strategies. Teacher cohort building and community is fostered through group lunches and additional activities (e.g., coordinated lab visits, behind the scenes tour of a local science museum, and industry panel). For evaluation of the RET program, pre/post-surveys measured the teacher’s self-reported ability, confidence, understanding, and frequency of use of the Engineering Design Process (EDP), Integrated STEM, and the UN Sustainable Development Goals. Formative assessment was conducted throughout the summer on various aspects of the RET through surveys and regular check-ins with the teachers. At the end of the summer, focus groups were conducted by an external evaluator for both the teacher participants and the research mentors. Both teachers and mentors declared the program was well planned and executed. The teachers developed close bonds and connections, learned a lot from each other, had meaningful research experiences, and developed a sense of community. The research mentors reported that the teachers provided useful research contributions, were enthusiastic about the research, had genuine lab experiences, developed professional skills, and built good community connections. Areas for improvement included clear expectations for everyone, reducing steep learning curves, and consistency of mentoring across the labs. The RET program continues into the academic year with occasional meetings to report on the implementation of their research-inspired lesson plan in their classroom. The RET participants share that they are bringing in the “real world” relevance to their students with an integrated STEM lens (e.g., climate change and UN SDGs) and that they refer back to their own lab experiences (e.g., importance of measuring chemicals accurately). The research experience has made several positive impacts on the teacher participants that also benefit their students. 
    more » « less
  4. null (Ed.)
    Purpose The purpose of this case study is to explore the perceptions of science, technology, engineering and mathematics (STEM) faculty members toward mentoring undergraduates. Design/methodology/approach Within the context of a student scholarship and faculty development project, funded by the National Science Foundation (NSF), STEM faculty members were interviewed at a small teaching-focused university in South Texas, United States. This research study utilized a qualitative case study approach based on semi-structured interviews with nine Mathematics and Computer Science faculty members. Transcripts were coded thematically, beginning with open coding and continuing with repeated rounds of comparison leading to the identification of four themes. Findings Four themes were identified in the data: describing settings where mentoring occurs, identifying the tasks of mentoring, developing skills for mentoring others and inhabiting the identity of a mentor. These findings suggest that increasing faculty engagement and effectiveness in mentoring STEM students may be a matter of broadening the definition of mentoring and helping faculty members develop the identity of a mentor. Practical implications In an effort to promote retention of students, specifically within STEM fields, many initiatives highlight the importance of faculty mentoring for undergraduate students. This research suggests that faculty members' perceptions of the role and structure of a mentoring relationship will shape this relationship and have an impact on student persistence and success. Originality/value While most studies of faculty–student mentoring focus on the experiences of students, this study explored faculty members' perceptions of that relationship. 
    more » « less
  5. With the rise of the popularity of Bayesian methods and accessible computer software, teaching and learning about Bayesian methods are expanding. However, most educational opportunities are geared toward statistics and data science students and are less available in the broader STEM fields. In addition, there are fewer opportunities at the K-12 level. With the indirect aim of introducing Bayesian methods at the K-12 level, we have developed a Bayesian data analysis activity and implemented it with 35 mathematics and science pre-service teachers. In this article, we describe the activity, the web app supporting the activity, and pre-service teachers’ perceptions of the activity. Lastly, we discuss future directions for preparing K-12 teachers in teaching and learning about Bayesian methods. 
    more » « less