skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Salient Experiences in Student Development: Impact of an Undergraduate STEM Teacher Preparation Program
The need for a comprehensive, high-quality pipeline for the development of undergraduate pre-service teachers, especially those that represent a diverse student body, within STEM disciplines is acute. Here, we studied the NoyceSCIENCE program to determine the most impactful experiences offered to undergraduates through the lens of student development theory. We used qualitative coding to analyze data collected from journals ( n = 29) written by students of varying backgrounds, and at varying levels within the program (i.e., the Scholar and Intern level) over a 3-year program running period. We observed that faculty mentorship, the ability of undergraduates to mentor others, volunteer experiences, and learning directly from experts had the greatest influence on student development overall. For Scholars that participate for more than 1 year in the program, access to undergraduate mentoring and volunteering experiences contributed most to student development. We posit that these findings are broadly applicable to other science learning communities and STEM content-focused teacher preparation programs as they are program components that can be integrated in isolation or in their entirety.  more » « less
Award ID(s):
1759000
PAR ID:
10321177
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Education
Volume:
6
ISSN:
2504-284X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this Great Ideas for Teaching Students (GIFTS) paper, we offer learning outcomes that we are beginning to recognize from our eight-week research experience for undergraduates (REU). There are four characteristics that have been found to be essential to success in Science, Technology, Engineering, and Mathematics (STEM) fields: a strong sense of STEM identity, scientific self-efficacy, a sense of belonging, and a psychological sense of community. This is especially true for first-year and transfer students pursuing STEM undergraduate degrees. A variety of studies have been published that go into detail about why these characteristics in particular have such a significant effect on student performance and retention. This paper will present Critical Self-Reflection as a practical way to integrate development of these characteristics into student research experiences to foster experiential learning that goes beyond increasing technical skills. STEM students are not often trained to critically self-reflect on their experiences in classroom and research settings. An inability for undergraduates to reflect intentionally on their experiences creates greater risk for attrition from STEM disciplines. Curated reflective experiences in collaborative learning settings can offer professional development opportunities to enhance students’ social and technical communication skills. There are four phases within the scaffolded Critical Self-Reflection framework: Learning to Reflect, Reflection for Action, Reflection in Action, and Reflection on Action. When applying the evidence-based practice, STEM undergraduate researchers describe their perceptions via three activities: creating a legacy statement, participating in facilitated dialogue sessions, and writing curated reflection journal entries within an REU. Through critical self-reflection exercises, we are beginning to find growth of first-year and transfer STEM undergraduates in the following areas: understanding of their role in the lab; confidence in their researcher identity; expression of agency; observation and communication skills; and intentionality for action. Participating in this self-reflection allows students to make meaning of their experience enabling them to hone the aforementioned characteristics that creates a pathway from their undergraduate experience to undergraduate degree completion, graduate degree attainment, and to the STEM workforce. 
    more » « less
  2. We are facing a national challenge of low retention rates for STEM-interested students. At the University of Washington Tacoma (UWT), a public, predominantly undergraduate, minority-serving institution (Asian-American, Native American, Pacific Islander, AANAPISI), only 28% of high achieving (high school GPA>3.0), STEM-interested at entry, Pell-eligible, first-time-in-college (FTIC) students undergraduates have entered a STEM major by the beginning of their 2nd yr, and the proportion is significantly lower for PEERs (persons excluded from STEM due to ethnicity or race [Asai, 2020]) at only 16%, representing a substantial equity gap. To address this problem, we developed the Achieving Change in our Communities for Equity and Student Success (ACCESS) in STEM Program. Supported by an NSF S-STEM grant since 2018, the program supports low-income, STEM-interested students by providing focused mentoring, a living learning community, a course-based research experience in their first year, and scholarships in their first two years of college. Based on the Student Persistence model of Graham et al. (2013), we hypothesized that these interventions would increase retention, academic performance, and progress into and through STEM majors. Our approach builds upon existing research demonstrating the importance of early research experiences (Thiry et al., 2012) and intensive mentoring and community building, particularly in the context of AANAPISI institutions (Nguyen et al., 2018). 
    more » « less
  3. With support from the National Science Foundation’s Division of Undergraduate Education, this five-year project led by a two-year HSI seeks to provide underrepresented students with mentored work experiences in computer information systems. Students will have access to on-campus work experiences and internships in businesses and industries. It is anticipated that some examples of potential student projects include mobile application development, cybersecurity, and computer support. It is expected that these experiences will increase undergraduate student interest, persistence, and success in computer information systems, as well as in STEM more broadly. To ensure that they are well-prepared for and gain the most from their work experiences, students will receive training on employability skills such as communication, teamwork, and project management. In addition, during their work experiences, students will be mentored by faculty, industry professionals, and peers. To strengthen the capacity of faculty to serve all students, including Hispanic students, the project will provide faculty with professional development focused on equity mindset. This framework to provide mentored work experiences will be developed and piloted at Phoenix College, in the computer information technology department and eventually expanded to other STEM fields at the institution. Following this, the project also intends to expand this framework four other two-year HSIs in the region. Through this work, the project aims to develop a replicable model for how two-year institutions can develop work experiences that foster increased student graduation and entry into STEM career pathways. This project, which is currently in its first year, seeks to examine how a curriculum that integrates cross-sector partnerships to provide work experiences can enhance STEM learning and retention. Using mixed methods and grounded theory, the project will expand knowledge about: (1) the impact of cross-sector partnerships that support work-focused experiential teaching and learning; (2) systematic ways to maintain and better use cross-sector partnerships; and (3) the degree to which a model of work-focused learning experiences can be adopted at other two-year HSIs and by other STEM fields. Baseline data about Hispanic serving identity at the pilot institution has been collected and assessed at the institutional, departmental, and for different educator roles including faculty, support staff, and administrative leaders to produce inputs towards developing a detailed plan of action. Early results from baseline data, visualizations, and planning responses will be reported in the submission. Expected long term results of the project include: development of sustainable mechanisms to foster cross-sector partnerships; increased student retention and workforce readiness; and measurable successes for STEM students, particularly Hispanic students, at two-year HSIs. 
    more » « less
  4. Varela, Daniella G (Ed.)
    The transition from an undergraduate STEM student to a successful STEM teacher who persists for more than 5 years teaching in a high needs school is a tenuous journey. Only one third of STEM teachers persist in teaching for more than 5 years, and in rural areas the number of STEM teachers who leave each year is even higher. The goal of the Noyce Scholarship program is to increase the number of effective STEM teachers in the public-school classroom. For most undergraduate STEM majors, their challenges in coursework, certification, and personal issues are highly individualized and need specific intervention. This qualitative case study examines the journey of one STEM undergraduate, how the Noyce program responded to the participant’s individual challenges, and the success and persistence of that Noyce recipient in the STEM classroom. Case studies such as this can provide critical information to EPP’s and STEM scholarship programs about the challenges and needs of STEM undergraduates and teachers, so that key changes can be made in those programs to better support and increase the number of effective STEM teachers who will stay in the classroom. 
    more » « less
  5. Course-based undergraduate research experiences (CUREs) are an effective way to integrate research into an undergraduate science curriculum and extend research experiences to a large, diverse group of early-career students. We developed a biology CURE at the University of Miami (UM) called the UM Authentic Research Laboratories (UMARL), in which groups of first-year students investigated novel questions and conducted projects of their own design related to the research themes of the faculty instructors. Herein, we describe the implementation and student outcomes of this long-running CURE. Using a national survey of student learning through research experiences in courses, we found that UMARL led to high student self-reported learning gains in research skills such as data analysis and science communication, as well as personal development skills such as self-confidence and self-efficacy. Our analysis of academic outcomes revealed that the odds of students who took UMARL engaging in individual research, graduating with a degree in science, technology, engineering, or mathematics (STEM) within 4 years, and graduating with honors were 1.5–1.7 times greater than the odds for a matched group of students from UM’s traditional biology labs. The authenticity of UMARL may have fostered students’ confidence that they can do real research, reinforcing their persistence in STEM. 
    more » « less