Abstract A self-consistent hybrid model of standing and moving striations was developed for low-current DC discharges in noble gases. We introduced the concept of surface diffusion in phase space (r,u) (where u denotes the electron kinetic energy) described by a tensor diffusion in the nonlocal Fokker-Planck kinetic equation for electrons in the collisional plasma. Electrons diffuse along surfaces of constant total energy ε=u-eφ(r) between energy jumps in inelastic collisions with atoms. Numerical solutions of the 1d1u kinetic equation for electrons were obtained by two methods and coupled to ion transport and Poisson solver. We studied the dynamics of striation formation in Townsend and glow discharges in Argon gas at low discharge currents using a two-level excitation-ionization model and a “full-chemistry” model, which includes stepwise and Penning ionization. Standing striations appeared in Townsend and glow discharges at low currents, and moving striations were obtained for the discharge currents exceeding a critical value. These waves originate at the anode and propagate towards the cathode. We have seen two types of moving striations with the 2-level and full-chemistry models, which resemble the s and p striations previously observed in the experiments. Simulations indicate that processes in the anode region could control moving striations in the positive column plasma. The developed model helps clarify the nature of standing and moving striations in DC discharges of noble gases at low discharge currents and low gas pressures. 
                        more » 
                        « less   
                    
                            
                            Spatiotemporal measurements of striations in a glow discharge’s positive column using laser-collisional induced fluorescence
                        
                    
    
            We have observed the behavior of striations caused by ionization waves propagating in low-pressure helium DC discharges using the non-invasive laser-collision induced fluorescence (LCIF) diagnostic. To achieve this, we developed an analytic fit of collisional radiative model (CRM) predictions to interpret the LCIF data and recover quantitative two-dimensional spatial maps of the electron density, ne, and the ratios of LCIF emission states that can be correlated with Te with the use of accurate distribution functions at localized positions within striated helium discharges at 500 mTorr, 750 mTorr, and 1 Torr. To our knowledge, these are the first spatiotemporal, laser-based, experimental measurements of ne in DC striations. The ne and 447:588 ratio distributions align closely with striation theory. Constriction of the positive column appears to occur with decreased gas pressure, as shown by the radial ne distribution. We identify a transition from a slow ionization wave to a fast ionization wave between 750 mTorr and 1 Torr. These experiments validate our analytic fit of ne, allowing the implementation of an LCIF diagnostic in helium without the need to develop a CRM. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1655280
- PAR ID:
- 10448572
- Date Published:
- Journal Name:
- AIP Advances
- Volume:
- 13
- Issue:
- 8
- ISSN:
- 2158-3226
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Plasma stratification has been studied for more than a century. Despite the many experimental studies reported on this topic, theoretical analyses and numerical modeling of this phenomenon have been mostly limited to rare gases. In this work, a one-dimensional fluid model with detailed kinetics of electrons and vibrationally excited molecules is employed to simulate moderate-pressure (i.e. a few Torrs) dc discharge in nitrogen in a 15.5 cm long tube of radius 0.55 cm. The model also considers ambipolar diffusion to account for the radial loss of ions and electrons to the wall. The proposed model predicts self-excited standing striations in nitrogen for a range of discharge currents. The impact of electron transport parameters and reaction rates obtained from a solution of local two-term and a multi-term Boltzmann equation on the predictions are assessed. In-depth kinetic analysis indicates that the striations result from the undulations in electron temperature caused due to the interaction between ionization and vibrational reactions. Furthermore, the vibrationally excited molecules associated with the lower energy levels are found to influence nitrogen plasma stratification and the striation pattern strongly. A balance between ionization processes and electron energy transport allows the formation of the observed standing striations. Simulations were conducted for a range of discharge current densities from ∼0.018 to 0.080 mA cm −2 , for an operating pressure of 0.7 Torr. Parametric studies show that the striation length decreases with increasing discharge current. The predictions from the model are compared against experimental measurements and are found to agree favorably.more » « less
- 
            The total number of electrons in a classical microplasma can be non-intrusively measured through elastic in-phase coherent microwave scattering (CMS). Here, we establish a theoretical basis for the CMS diagnostic technique with an emphasis on Thomson and collisional scattering in short, thin unmagnetized plasma media. Experimental validation of the diagnostic is subsequently performed via linearly polarized, variable frequency (10.5–12 GHz) microwave scattering off laser induced 1–760 Torr air-based microplasmas (287.5 nm O2 resonant photoionization by ~ 5 ns, < 3 mJ pulses) with diverse ionization and collisional features. Namely, conducted studies include a verification of short-dipole-like radiation behavior, plasma volume imaging via ICCD photography, and measurements of relative phases, total scattering cross-sections, and total number of electrons Ne in the generated plasma filaments following absolute calibration using a dielectric scattering sample. Findings of the paper suggest an ideality of CMS in the Thomson “free-electron” regime—where a detailed knowledge of plasma and collisional properties (which are often difficult to accurately characterize due to the potential influence of inhomogeneities, local temperatures and densities, present species, and so on) is unnecessary to extract Ne from the scattered signal. The Thomson scattering regime of microwaves is further experimentally verified via measurements of the relative phase between the incident electric field and electron displacement.more » « less
- 
            The total number of electrons in a classical microplasma can be non-intrusively measured through elastic in-phase coherent microwave scattering (CMS). Here, we establish a theoretical basis for the CMS diagnostic technique with an emphasis on Thomson and collisional scattering in short, thin unmagnetized plasma media. Experimental validation of the diagnostic is subsequently performed via linearly polarized, variable frequency (10.5–12 GHz) microwave scattering off laser induced 1–760 Torr air-based microplasmas (287.5 nm O2 resonant photoionization by ~ 5 ns, < 3 mJ pulses) with diverse ionization and collisional features. Namely, conducted studies include a verification of short-dipole-like radiation behavior, plasma volume imaging via ICCD photography, and measurements of relative phases, total scattering cross-sections, and total number of electrons Ne in the generated plasma filaments following absolute calibration using a dielectric scattering sample. Findings of the paper suggest an ideality of CMS in the Thomson “free-electron” regime—where a detailed knowledge of plasma and collisional properties (which are often difficult to accurately characterize due to the potential influence of inhomogeneities, local temperatures and densities, present species, and so on) is unnecessary to extract Ne from the scattered signal. The Thomson scattering regime of microwaves is further experimentally verified via measurements of the relative phase between the incident electric field and electron displacement.more » « less
- 
            The total number of electrons in a classical microplasma can be non-intrusively measured through elastic in-phase coherent microwave scattering (CMS). Here, we establish a theoretical basis for the CMS diagnostic technique with an emphasis on Thomson and collisional scattering in short, thin unmagnetized plasma media. Experimental validation of the diagnostic is subsequently performed via linearly polarized, variable frequency (10.5–12 GHz) microwave scattering off laser induced 1–760 Torr air-based microplasmas (287.5 nm O2 resonant photoionization by ~ 5 ns, < 3 mJ pulses) with diverse ionization and collisional features. Namely, conducted studies include a verification of short-dipole-like radiation behavior, plasma volume imaging via ICCD photography, and measurements of relative phases, total scattering cross-sections, and total number of electrons Ne in the generated plasma filaments following absolute calibration using a dielectric scattering sample. Findings of the paper suggest an ideality of CMS in the Thomson “free-electron” regime—where a detailed knowledge of plasma and collisional properties (which are often difficult to accurately characterize due to the potential influence of inhomogeneities, local temperatures and densities, present species, and so on) is unnecessary to extract Ne from the scattered signal. The Thomson scattering regime of microwaves is further experimentally verified via measurements of the relative phase between the incident electric field and electron displacement.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    