skip to main content


Title: Why Do We Need to Learn about Citational Practices? Recognizing Knowledge Production from the Global Souths and Beyond
How do you decide which papers to cite, how many, and from which particular sources? We reflect and discuss the implications of these critical questions based on our experiences in the panel and workshops on the topic of citational justice that took place at CSCW, CLIHC, and India HCI in 2021.  more » « less
Award ID(s):
2203212
NSF-PAR ID:
10448624
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
XRDS: Crossroads, The ACM Magazine for Students
Volume:
29
Issue:
3
ISSN:
1528-4972
Page Range / eLocation ID:
12 to 17
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. It takes great effort to manually or semi-automatically convert free-text phenotype narratives (e.g., morphological descriptions in taxonomic works) to a computable format before they can be used in large-scale analyses. We argue that neither a manual curation approach nor an information extraction approach based on machine learning is a sustainable solution to produce computable phenotypic data that are FAIR (Findable, Accessible, Interoperable, Reusable) (Wilkinson et al. 2016). This is because these approaches do not scale to all biodiversity, and they do not stop the publication of free-text phenotypes that would need post-publication curation. In addition, both manual and machine learning approaches face great challenges: the problem of inter-curator variation (curators interpret/convert a phenotype differently from each other) in manual curation, and keywords to ontology concept translation in automated information extraction, make it difficult for either approach to produce data that are truly FAIR. Our empirical studies show that inter-curator variation in translating phenotype characters to Entity-Quality statements (Mabee et al. 2007) is as high as 40% even within a single project. With this level of variation, curated data integrated from multiple curation projects may still not be FAIR. The key causes of this variation have been identified as semantic vagueness in original phenotype descriptions and difficulties in using standardized vocabularies (ontologies). We argue that the authors describing characters are the key to the solution. Given the right tools and appropriate attribution, the authors should be in charge of developing a project's semantics and ontology. This will speed up ontology development and improve the semantic clarity of the descriptions from the moment of publication. In this presentation, we will introduce the Platform for Author-Driven Computable Data and Ontology Production for Taxonomists, which consists of three components: a web-based, ontology-aware software application called 'Character Recorder,' which features a spreadsheet as the data entry platform and provides authors with the flexibility of using their preferred terminology in recording characters for a set of specimens (this application also facilitates semantic clarity and consistency across species descriptions); a set of services that produce RDF graph data, collects terms added by authors, detects potential conflicts between terms, dispatches conflicts to the third component and updates the ontology with resolutions; and an Android mobile application, 'Conflict Resolver,' which displays ontological conflicts and accepts solutions proposed by multiple experts. a web-based, ontology-aware software application called 'Character Recorder,' which features a spreadsheet as the data entry platform and provides authors with the flexibility of using their preferred terminology in recording characters for a set of specimens (this application also facilitates semantic clarity and consistency across species descriptions); a set of services that produce RDF graph data, collects terms added by authors, detects potential conflicts between terms, dispatches conflicts to the third component and updates the ontology with resolutions; and an Android mobile application, 'Conflict Resolver,' which displays ontological conflicts and accepts solutions proposed by multiple experts. Fig. 1 shows the system diagram of the platform. The presentation will consist of: a report on the findings from a recent survey of 90+ participants on the need for a tool like Character Recorder; a methods section that describes how we provide semantics to an existing vocabulary of quantitative characters through a set of properties that explain where and how a measurement (e.g., length of perigynium beak) is taken. We also report on how a custom color palette of RGB values obtained from real specimens or high-quality specimen images, can be used to help authors choose standardized color descriptions for plant specimens; and a software demonstration, where we show how Character Recorder and Conflict Resolver can work together to construct both human-readable descriptions and RDF graphs using morphological data derived from species in the plant genus Carex (sedges). The key difference of this system from other ontology-aware systems is that authors can directly add needed terms to the ontology as they wish and can update their data according to ontology updates. a report on the findings from a recent survey of 90+ participants on the need for a tool like Character Recorder; a methods section that describes how we provide semantics to an existing vocabulary of quantitative characters through a set of properties that explain where and how a measurement (e.g., length of perigynium beak) is taken. We also report on how a custom color palette of RGB values obtained from real specimens or high-quality specimen images, can be used to help authors choose standardized color descriptions for plant specimens; and a software demonstration, where we show how Character Recorder and Conflict Resolver can work together to construct both human-readable descriptions and RDF graphs using morphological data derived from species in the plant genus Carex (sedges). The key difference of this system from other ontology-aware systems is that authors can directly add needed terms to the ontology as they wish and can update their data according to ontology updates. The software modules currently incorporated in Character Recorder and Conflict Resolver have undergone formal usability studies. We are actively recruiting Carex experts to participate in a 3-day usability study of the entire system of the Platform for Author-Driven Computable Data and Ontology Production for Taxonomists. Participants will use the platform to record 100 characters about one Carex species. In addition to usability data, we will collect the terms that participants submit to the underlying ontology and the data related to conflict resolution. Such data allow us to examine the types and the quantities of logical conflicts that may result from the terms added by the users and to use Discrete Event Simulation models to understand if and how term additions and conflict resolutions converge. We look forward to a discussion on how the tools (Character Recorder is online at http://shark.sbs.arizona.edu/chrecorder/public) described in our presentation can contribute to producing and publishing FAIR data in taxonomic studies. 
    more » « less
  2. Abstract We investigate the link between individual differences in science reasoning skills and mock jurors’ deliberation behavior; specifically, how much they talk about the scientific evidence presented in a complicated, ecologically valid case during deliberation. Consistent with our preregistered hypothesis, mock jurors strong in scientific reasoning discussed the scientific evidence more during deliberation than those with weaker science reasoning skills. Summary With increasing frequency, legal disputes involve complex scientific information (Faigman et al., 2014; Federal Judicial Center, 2011; National Research Council, 2009). Yet people often have trouble consuming scientific information effectively (McAuliff et al., 2009; National Science Board, 2014; Resnick et al., 2016). Individual differences in reasoning styles and skills can affect how people comprehend complex evidence (e.g., Hans, Kaye, Dann, Farley, Alberston, 2011; McAuliff & Kovera, 2008). Recently, scholars have highlighted the importance of studying group deliberation contexts as well as individual decision contexts (Salerno & Diamond, 2010; Kovera, 2017). If individual differences influence how jurors understand scientific evidence, it invites questions about how these individual differences may affect the way jurors discuss science during group deliberations. The purpose of the current study was to examine how individual differences in the way people process scientific information affects the extent to which jurors discuss scientific evidence during deliberations. Methods We preregistered the data collection plan, sample size, and hypotheses on the Open Science Framework. Jury-eligible community participants (303 jurors across 50 juries) from Phoenix, AZ (Mage=37.4, SD=16.9; 58.8% female; 51.5% White, 23.7% Latinx, 9.9% African-American, 4.3% Asian) were paid $55 for a 3-hour mock jury study. Participants completed a set of individual questionnaires related to science reasoning skills and attitudes toward science prior to watching a 45-minute mock armed-robbery trial. The trial included various pieces of evidence and testimony, including forensic experts testifying about mitochondrial DNA evidence (mtDNA; based on Hans et al. 2011 materials). Participants were then given 45 minutes to deliberate. The deliberations were video recorded and transcribed to text for analysis. We analyzed the deliberation content for discussions related to the scientific evidence presented during trial. We hypothesized that those with stronger scientific and numeric reasoning skills, higher need for cognition, and more positive views towards science would discuss scientific evidence more than their counterparts during deliberation. Measures We measured Attitudes Toward Science (ATS) with indices of scientific promise and scientific reservations (Hans et al., 2011; originally developed by the National Science Board, 2004; 2006). We used Drummond and Fischhoff’s (2015) Scientific Reasoning Scale (SRS) to measure scientific reasoning skills. Weller et al.’s (2012) Numeracy Scale (WNS) measured proficiency in reasoning with quantitative information. The NFC-Short Form (Cacioppo et al., 1984) measured need for cognition. Coding We identified verbal utterances related to the scientific evidence presented in court. For instance, references to DNA evidence in general (e.g. nuclear DNA being more conclusive than mtDNA), the database that was used to compare the DNA sample (e.g. the database size, how representative it was), exclusion rates (e.g. how many other people could not be excluded as a possible match), and the forensic DNA experts (e.g. how credible they were perceived). We used word count to operationalize the extent to which each juror discussed scientific information. First we calculated the total word count for each complete jury deliberation transcript. Based on the above coding scheme we determined the number of words each juror spent discussing scientific information. To compare across juries, we wanted to account for the differing length of deliberation; thus, we calculated each juror’s scientific deliberation word count as a proportion of their jury’s total word count. Results On average, jurors discussed the science for about 4% of their total deliberation (SD=4%, range 0-22%). We regressed proportion of the deliberation jurors spend discussing scientific information on the four individual difference measures (i.e., SRS, NFC, WNS, ATS). Using the adjusted R-squared, the measures significantly accounted for 5.5% of the variability in scientific information deliberation discussion, SE=0.04, F(4, 199)=3.93, p=0.004. When controlling for all other variables in the model, the Scientific Reasoning Scale was the only measure that remained significant, b=0.003, SE=0.001, t(203)=2.02, p=0.045. To analyze how much variability each measure accounted for, we performed a stepwise regression, with NFC entered at step 1, ATS entered at step 2, WNS entered at step 3, and SRS entered at step 4. At step 1, NFC accounted for 2.4% of the variability, F(1, 202)=5.95, p=0.02. At step 2, ATS did not significantly account for any additional variability. At step 3, WNS accounted for an additional 2.4% of variability, ΔF(1, 200)=5.02, p=0.03. Finally, at step 4, SRS significantly accounted for an additional 1.9% of variability in scientific information discussion, ΔF(1, 199)=4.06, p=0.045, total adjusted R-squared of 0.055. Discussion This study provides additional support for previous findings that scientific reasoning skills affect the way jurors comprehend and use scientific evidence. It expands on previous findings by suggesting that these individual differences also impact the way scientific evidence is discussed during juror deliberations. In addition, this study advances the literature by identifying Scientific Reasoning Skills as a potentially more robust explanatory individual differences variable than more well-studied constructs like Need for Cognition in jury research. Our next steps for this research, which we plan to present at AP-LS as part of this presentation, incudes further analysis of the deliberation content (e.g., not just the mention of, but the accuracy of the references to scientific evidence in discussion). We are currently coding this data with a software program called Noldus Observer XT, which will allow us to present more sophisticated results from this data during the presentation. Learning Objective: Participants will be able to describe how individual differences in scientific reasoning skills affect how much jurors discuss scientific evidence during deliberation. 
    more » « less
  3. Cyclical models are often used to describe how students learn and develop. These models usually focus on the cognitive domain and describe how knowledge and skills are learned within a course or classroom. By providing insights into how students learn and thus how an instructor can support learning, these models and the schemas drawn from them also influence beliefs about learning and thus how educational programs are designed and developed. In this paper the authors present an alternative cyclical model of learning that is drawn from a philosophy of enactivism rather than rational dualism. In comparison with the dualism inherent in viewpoints derived from Descartes where learners construct internal mental representation from inputs received from the external world, in enactivism development occurs through continual dynamic interactions between an agent and their environment. Enactivism thus emphasizes the role environments play in learning and development. The model developed in this paper hypothesizes that the environment in which learning typically occurs can be represented by three elements: the learner’s identity and culture which informs personally significant goals and values; the affordances a degree program offers in areas of knowledge, identity, and context which informs the capabilities of the environment; and the implicit and explicit goals of education as they are negotiated and understood by learners and teachers. These three elements are strongly coupled and together define the ever-changing learning environment. The paper explores how changing technologies and cultures affect each of these three elements in regards to students’ ability to become technologically literate. While rational or dualist views of education see such environmental changes as peripheral to developing accurate representations of truth, enactivism posits that environment significantly affects the process of education. Because each student or faculty member is a participant in a learning organization changes within the organization—whether externally or internally driven—change the learning process. If education is deemed successful when students can transfer learning to new contexts, dualist models assume transfer is weakly coupled to educational environments while the enactivist viewpoint posits that environments strongly affect transfer. The enactivist model can inform efforts to encourage technological literacy. Like many areas in STEM, education technological literacy has sought to identify and support learning outcomes that specify effective teaching or content interventions which enable learners to become more technologically literate. From the enactivist perspective, however, technological literacy is achieved by placing individuals into an environment in which they must navigate technology-induced challenges, with success defined as learning processes that allow learners to manage tensions inherent in their environment. Because most students already live in such environments teaching definable or enumerable outcomes makes less sense than helping student to be metacognitive and reflective how they manage and relate with technology. 
    more » « less
  4. Engineers are called to play an important role in addressing the complex problems of our global society, such as climate change and global health care. In order to adequately address these complex problems, engineers must be able to identify and incorporate into their decision making relevant aspects of systems in which their work is contextualized, a skill often referred to as systems thinking. However, within engineering, research on systems thinking tends to emphasize the ability to recognize potentially relevant constituent elements and parts of an engineering problem, rather than how these constituent elements and parts are embedded in broader economic, sociocultural, and temporal contexts and how all of these must inform decision making about problems and solutions. Additionally, some elements of systems thinking, such as an awareness of a particular sociocultural context or the coordination of work among members of a cross-disciplinary team, are not always recognized as core engineering skills, which alienates those whose strengths and passions are related to, for example, engineering systems that consider and impact social change. Studies show that women and minorities, groups underrepresented within engineering, are drawn to engineering in part for its potential to address important social issues. Emphasizing the importance of systems thinking and developing a more comprehensive definition of systems thinking that includes both constituent parts and contextual elements of a system will help students recognize the relevance and value of these other elements of engineering work and support full participation in engineering by a diverse group of students. We provide an overview of our study, in which we are examining systems thinking across a range of expertise to develop a scenario-based assessment tool that educators and researchers can use to evaluate engineering students’ systems thinking competence. Consistent with the aforementioned need to define and study systems thinking in a comprehensive, inclusive manner, we begin with a definition of systems thinking as a holistic approach to problem solving in which linkages and interactions of the immediate work with constituent parts, the larger sociocultural context, and potential impacts over time are identified and incorporated into decision making. In our study, we seek to address two key questions: 1) How do engineers of different levels of education and experience approach problems that require systems thinking? and 2) How do different types of life, educational, and work experiences relate to individuals’ demonstrated level of expertise in solving systems thinking problems? Our study is comprised of three phases. The first two phases include a semi-structured interview with engineering students and professionals about their experiences solving a problem requiring systems thinking and a think-aloud interview in which participants are asked to talk through how they would approach a given engineering scenario and later reflect on the experiences that inform their thinking. Data from these two phases will be used to develop a written assessment tool, which we will test by administering the written instrument to undergraduate and graduate engineering students in our third study phase. Our paper describes our study design and framing and includes preliminary findings from the first phase of our study. 
    more » « less
  5. Nicewonger, Todd E. ; McNair, Lisa D. ; Fritz, Stacey (Ed.)
    https://pressbooks.lib.vt.edu/alaskanative/ At the start of the pandemic, the editors of this annotated bibliography initiated a remote (i.e., largely virtual) ethnographic research project that investigated how COVID-19 was impacting off-site modular construction practices in Alaska Native communities. Many of these communities are located off the road system and thus face not only dramatically higher costs but multiple logistical challenges in securing licensed tradesmen and construction crews and in shipping building supplies and equipment to their communities. These barriers, as well as the region’s long winters and short building seasons, complicate the construction of homes and related infrastructure projects. Historically, these communities have also grappled with inadequate housing, including severe overcrowding and poor-quality building stock that is rarely designed for northern Alaska’s climate (Marino 2015). Moreover, state and federal bureaucracies and their associated funding opportunities often further complicate home building by failing to accommodate the digital divide in rural Alaska and the cultural values and practices of Native communities.[1] It is not surprising, then, that as we were conducting fieldwork for this project, we began hearing stories about these issues and about how the restrictions caused by the pandemic were further exacerbating them. Amidst these stories, we learned about how modular home construction was being imagined as a possible means for addressing both the complications caused by the pandemic and the need for housing in the region (McKinstry 2021). As a result, we began to investigate how modular construction practices were figuring into emergent responses to housing needs in Alaska communities. We soon realized that we needed to broaden our focus to capture a variety of prefabricated building methods that are often colloquially or idiomatically referred to as “modular.” This included a range of prefabricated building systems (e.g., manufactured, volumetric modular, system-built, and Quonset huts and other reused military buildings[2]). Our further questions about prefabricated housing in the region became the basis for this annotated bibliography. Thus, while this bibliography is one of multiple methods used to investigate these issues, it played a significant role in guiding our research and helped us bring together the diverse perspectives we were hearing from our interviews with building experts in the region and the wider debates that were circulating in the media and, to a lesser degree, in academia. The actual research for each of three sections was carried out by graduate students Lauren Criss-Carboy and Laura Supple.[3] They worked with us to identify source materials and their hard work led to the team identifying three themes that cover intersecting topics related to housing security in Alaska during the pandemic. The source materials collected in these sections can be used in a variety of ways depending on what readers are interested in exploring, including insights into debates on housing security in the region as the pandemic was unfolding (2021-2022). The bibliography can also be used as a tool for thinking about the relational aspects of these themes or the diversity of ways in which information on housing was circulating during the pandemic (and the implications that may have had on community well-being and preparedness). That said, this bibliography is not a comprehensive analysis. Instead, by bringing these three sections together with one another to provide a snapshot of what was happening at that time, it provides a critical jumping off point for scholars working on these issues. The first section focuses on how modular housing figured into pandemic responses to housing needs. In exploring this issue, author Laura Supple attends to both state and national perspectives as part of a broader effort to situate Alaska issues with modular housing in relation to wider national trends. This led to the identification of multiple kinds of literature, ranging from published articles to publicly circulated memos, blog posts, and presentations. These materials are important source materials that will likely fade in the vastness of the Internet and thus may help provide researchers with specific insights into how off-site modular construction was used – and perhaps hyped – to address pandemic concerns over housing, which in turn may raise wider questions about how networks, institutions, and historical experiences with modular construction are organized and positioned to respond to major societal disruptions like the pandemic. As Supple pointed out, most of the material identified in this review speaks to national issues and only a scattering of examples was identified that reflect on the Alaskan context. The second section gathers a diverse set of communications exploring housing security and homelessness in the region. The lack of adequate, healthy housing in remote Alaska communities, often referred to as Alaska’s housing crisis, is well-documented and preceded the pandemic (Guy 2020). As the pandemic unfolded, journalists and other writers reported on the immense stress that was placed on already taxed housing resources in these communities (Smith 2020; Lerner 2021). The resulting picture led the editors to describe in their work how housing security in the region exists along a spectrum that includes poor quality housing as well as various forms of houselessness including, particularly relevant for the context, “hidden homelessness” (Hope 2020; Rogers 2020). The term houseless is a revised notion of homelessness because it captures a richer array of both permanent and temporary forms of housing precarity that people may experience in a region (Christensen et al. 2107). By identifying sources that reflect on the multiple forms of housing insecurity that people were facing, this section highlights the forms of disparity that complicated pandemic responses. Moreover, this section underscores ingenuity (Graham 2019; Smith 2020; Jason and Fashant 2021) that people on the ground used to address the needs of their communities. The third section provides a snapshot from the first year of the pandemic into how CARES Act funds were allocated to Native Alaska communities and used to address housing security. This subject was extremely complicated in Alaska due to the existence of for-profit Alaska Native Corporations and disputes over eligibility for the funds impacted disbursements nationwide. The resources in this section cover that dispute, impacts of the pandemic on housing security, and efforts to use the funds for housing as well as barriers Alaska communities faced trying to secure and use the funds. In summary, this annotated bibliography provides an overview of what was happening, in real time, during the pandemic around a specific topic: housing security in largely remote Alaska Native communities. The media used by housing specialists to communicate the issues discussed here are diverse, ranging from news reports to podcasts and from blogs to journal articles. This diversity speaks to the multiple ways in which information was circulating on housing at a time when the nightly news and radio broadcasts focused heavily on national and state health updates and policy developments. Finding these materials took time, and we share them here because they illustrate why attention to housing security issues is critical for addressing crises like the pandemic. For instance, one theme that emerged out of a recent National Science Foundation workshop on COVID research in the North NSF Conference[4] was that Indigenous communities are not only recovering from the pandemic but also evaluating lessons learned to better prepare for the next one, and resilience will depend significantly on more—and more adaptable—infrastructure and greater housing security. 
    more » « less