skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling Spatio-Temporal Dynamics of BMPs Adoption for Stormwater Management in Urban Areas
Nonpoint source (NPS) pollution is a severe problem in the U.S. and worldwide. Best management practices (BMPs) have been widely used to control stormwater and reduce NPS pollution. Previous research has shown that socio-economic factors affect households’ adoption of BMPs, but few studies have quantitatively analyzed the spatio-temporal dynamics of household BMP adoption under different socio-economic conditions. In this paper, diverse regression approaches (linear, LASSO, support vector, random forest) were used on the ten-year data of household BMP adoption in socio-economically diverse areas of Washington, D.C., to model BMP adoption behaviors. The model with the best performance (random forest regression, R2 = 0.67, PBIAS = 7.2) was used to simulate spatio-temporal patterns of household BMP adoption in two nearby watersheds (Watts Branch watershed between Washington, D.C., and Maryland; Watershed 263 in Baltimore), each of which are characterized by different socio-economic (population density, median household income, renter rate, average area per household, etc.) and physical attributes (total area, percentage of canopy in residential area, average distance to nearest BMPs, etc.). The BMP adoption rate was considerably higher at the Watts Branch watershed (14 BMPs per 1000 housing units) than at Watershed 263 (4 BMPs per 1000 housing units) due to distinct differences in the watershed characteristics (lower renter rate and poverty rate; higher median household income, education level, and canopy rate in residential areas). This research shows that adoption behavior tends to cluster in urban areas across socio-economic boundaries and that targeted, community-specific social interventions are needed to reach the NPS control goal.  more » « less
Award ID(s):
1824807
PAR ID:
10448629
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Water
Volume:
15
Issue:
14
ISSN:
2073-4441
Page Range / eLocation ID:
2549
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nonpoint source (NPS) pollution is a pressing issue worldwide, especially in the Chesapeake Bay, where sediment, nitrogen (N), and phosphorus (P) are the most critical water quality concerns. Despite significant efforts by federal, state, and local governments, the improvement in water quality has been limited. Investigating the spatial distribution of NPS hotspots can help understand NPS pollutant output and guide control measures. We hypothesize that as land cover changes from natural (e.g., forestland) and agricultural to suburban and ultra-urban, the distribution of NPS pollution source areas becomes increasingly spatially uniform. To test this hypothesis, we analyzed three real watersheds with varying land cover (Greensboro watershed for agriculture, Watts Branch watershed for suburban, and Watershed 263 for ultra-urban) and three synthetic watersheds developed based on the Watts Branch watershed, which ranged from forested and agricultural to ultra-urban but had the same soil, slope, and weather conditions. The Soil and Water Assessment Tool (SWAT) was selected as a phenomenological model for the analysis, and SWAT-CUP was used for model calibration and validation. The hydrologic responses of the three real and synthetic watersheds were simulated over ten years (1993–2002 or 2002–2011), and calibration and validation results indicated that SWAT could properly predict the export of runoff and three target NPS pollution constituents (sediment, total nitrogen, and total phosphorus). The results showed that the distribution of NPS pollutant outputs becomes increasingly uniform as land cover changes from agriculture to ultra-urban across watersheds. This research suggests that the spatial distribution of NPS pollution source areas is a function of the major land cover category of study watersheds, and control strategies should be adapted accordingly. If NPS pollution is distributed unevenly across a watershed, hotspot areas output a disproportionate amount of pollution and require more targeted and intensive control measures. Conversely, if the distribution of NPS pollution is more uniform across a watershed, the control strategies need to be more widespread and encompass a larger area. 
    more » « less
  2. BMPs have been proven to be efficient in managing P loads in Florida. BMP efficiencies vary between 20% and 80%, with few higher than 50%.Integration of modeling strategies and field demonstrations could improve BMP efficiencies. Further implementation of testbeds and pilot studies could improve adoption and enhance our understanding of BMP efficiency. In Florida, the implementation of best management practices (BMPs) has significantly reduced phosphorous (P) loads from the Everglades Agricultural Area (EAA) into the Lake Okeechobee watershed over the past two decades. While the removal of over 6,165 metric tons of total phosphorus entering the Everglades Protection Area is a notable achievement, some freshwater sources continue to exceed established limits (Naja et al., 2017), demanding a critical examination of BMP efficiency at managing low P concentrations. In this systematic literature review, we analyzed peer-reviewed journal manuscripts published over the past 30 years, focusing on the intersection of phosphorus management, water, Florida, and the environment. The dataset synthesized from our review provides insights into the efficiency of BMPs in terms of P management over time. Our findings show a predominant focus on stormwater treatment areas (STAs) and constructed wetlands as BMPs with demonstrated good efficiency. However, the variability in reported efficiencies underscores the complexity of phosphorus pollution and its impacts. Treatment trains ranged from 20% to 39% for the lower range of efficiency in phosphorus removal and from 60% to 79% for the higher range of efficiency. Focusing on strategies with higher P load reduction efficiencies could enhance future management strategies in Florida. Field-based pilot studies with well-defined control settings can facilitate long-term evaluations of P management programs that allow the implementation of BMPs. Similarly, the evaluation of new technologies, including materials, precision-smart practices, and the integration of modeling strategies with field-scale studies suggest a promising approach to engaging stakeholders in achieving higher BMP efficiencies. This systematic review highlights current BMP strategies that have demonstrated high P load reduction efficiency. There is a need for continued research that simultaneously assesses strategies to reduce P pollution before it forms and employs a multidimensional approach to P management. This approach should integrate multiple successful BMPs through field and modeling strategies. Keywords: Agriculture, Best Management Practices (BMP), Florida, Non-point source pollutants, Phosphorus loads. 
    more » « less
  3. We develop the first spatially integrated economic-hydrological model of the western Lake Erie basin explicitly linking economic models of farmers' field-level Best Management Practice (BMP) adoption choices with the Soil and Water Assessment Tool (SWAT) model to evaluate nutrient management policy cost-effectiveness. We quantify tradeoffs among phosphorus reduction policies and find that a hybrid policy coupling a fertilizer tax with cost-share payments for subsurface placement is the most cost-effective, and when implemented with a 200% tax can achieve the stated policy goal of 40% reduction in nutrient loadings. We also find economic adoption models alone can overstate the potential for BMPs to reduce nutrient loadings by ignoring biophysical complexities. Key Words: Integrated assessment model; agricultural land watershed model; water quality; cost-share; conservation practice; nutrient management JEL Codes: H23, Q51, Q52, Q53 
    more » « less
  4. null (Ed.)
    Public transit is central to cultivating equitable communities. Meanwhile, the novel coronavirus disease COVID-19 and associated social restrictions has radically transformed ridership behavior in urban areas. Perhaps the most concerning aspect of the COVID-19 pandemic is that low-income and historically marginalized groups are not only the most susceptible to economic shifts but are also most reliant on public transportation. As revenue decreases, transit agencies are tasked with providing adequate public transportation services in an increasingly hostile economic environment. Transit agencies therefore have two primary concerns. First, how has COVID-19 impacted ridership and what is the new post-COVID normal? Second, how has ridership varied spatio-temporally and between socio-economic groups? In this work we provide a data-driven analysis of COVID-19’s affect on public transit operations and identify temporal variation in ridership change. We then combine spatial distributions of ridership decline with local economic data to identify variation between socio-economic groups. We find that in Nashville and Chattanooga, TN, fixed-line bus ridership dropped by 66.9% and 65.1% from 2019 baselines before stabilizing at 48.4% and 42.8% declines respectively. The largest declines were during morning and evening commute time. Additionally, there was a significant difference in ridership decline between the highest-income areas and lowest-income areas (77% vs 58%) in Nashville. 
    more » « less
  5. null (Ed.)
    Public transit is central to cultivating equitable communities. Meanwhile, the novel coronavirus disease COVID-19 and associated social restrictions has radically transformed ridership behavior in urban areas. Perhaps the most concerning aspect of the COVID-19 pandemic is that low-income and historically marginalized groups are not only the most susceptible to economic shifts but are also most reliant on public transportation. As revenue decreases, transit agencies are tasked with providing adequate public transportation services in an increasingly hostile economic environment. Transit agencies therefore have two primary concerns. First, how has COVID-19 impacted ridership and what is the new post-COVID normal? Second, how has ridership varied spatio-temporally and between socio-economic groups? In this work we provide a data-driven analysis of COVID-19’s affect on public transit operations and identify temporal variation in ridership change. We then combine spatial distributions of ridership decline with local economic data to identify variation between socio-economic groups. We find that in Nashville and Chattanooga, TN, fixed-line bus ridership dropped by 66.9% and 65.1% from 2019 baselines before stabilizing at 48.4% and 42.8% declines respectively. The largest declines were during morning and evening commute time. Additionally, there was a significant difference in ridership decline between the highest-income areas and lowest-income areas (77% vs 58%) in Nashville. 
    more » « less