Abstract The Voyager 2 crossing of the termination shock indicated that most of the upstream energy from the thermal solar wind ions was transferred to pickup ions (PUIs) and other energetic particles downstream of the shock. We use hybrid simulations at the termination shock for the Voyager 2, flank, and tail directions to evaluate the distributions of different ion species downstream of the shock over the energy range of 0.52–55 keV. Here, we extend the work of Gkioulidou et al., which showed an energy-dependent discrepancy between modeled and energetic neutral atom (ENA) observations, and fit distributions to a hybrid model to show that a population of PUIs accelerated via diffusive shock acceleration (DSA) to become low-energy anomalous cosmic rays (ACRs) can bridge the gap between modeled and observed ENA fluxes. Our results with the inclusion of DSA via hybrid fitting give entirely new and novel evidence that DSA at the termination shock is likely to be an important physical process. These ACRs carry a significant fraction of the energy density at the termination shock (22%, 13%, and 19% in the Voyager 2, flank, and tail directions, respectively). Using these ACRs in global ENA modeling of the heliosphere from 0.52 to 55 keV, we find that scaling factors as large as 1.8–2.5 are no longer required to match ENA observations at energies of ∼1–4 keV. Large discrepancies between modeled and observed ENAs only remain over energies of 4–20 keV, indicating that there may be a further acceleration mechanism in the heliosheath at these energies.
more »
« less
Relating Energetic Ion Spectra to Energetic Neutral Atoms
Abstract Heliospheric energetic neutral atoms (ENAs) originate from energetic ions that are neutralized by charge exchange with neutral atoms in the heliosheath and very local interstellar medium (VLISM). Since neutral atoms are unaffected by electromagnetic fields, they propagate ballistically with the same speeds as parent particles. Consequently, measurements of ENA distributions allow one to remotely image the energetic ion distributions in the heliosheath and VLISM. The origin of the energetic ions that spawn ENAs is still debated, particularly at energies higher than ∼keV. In this work, we summarize five possible sources of energetic ions in the heliosheath that cover the ENA energy from a few keV to hundreds of keV. Three sources of the energetic ions are related to pickup ions (PUIs): those PUIs transmitted across the heliospheric termination shock (HTS), those reflected once or multiple times at the HTS, i.e., reflected PUIs, and those PUIs multiply reflected and further accelerated by the HTS. Two other kinds of ions that can be considered are ions transmitted from the suprathermal tail of the PUI distribution and other particles accelerated at the HTS. By way of illustration, we use these energetic particle distributions, taking account of their evolution in the heliosheath, to calculate the ENA intensities and to analyze the characteristics of ENA spectra observed at 1 au.
more »
« less
- Award ID(s):
- 2148653
- PAR ID:
- 10448685
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 944
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 198
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We revisit previous hybrid simulations of the heating and acceleration of interstellar pickup ions (PUIs) at the solar wind termination shock. In previous simulations, a relatively cold initial distribution of PUIs was assumed; and while the resulting shock-heated distribution was consistent with Voyager 2 LECP measurements at about 30 keV, the intensity of the distribution downstream of the shock in the ~1–10 keV energy range was lower than predictions based on analysis of energetic neutral atoms (ENAs) from the Interstellar Boundary Explorer-Hi and Cassini's Ion and Neutral Camera. Here we perform new simulations with more realistic initial PUI distributions. We assume the distribution is a partially filled spherical shell in velocity space with a radius that varies from 320 to 640 km s−1. We then use the distributions downstream of the shock from these new simulations to estimate the ENA flux spectrum and compare with observations. We find that the predicted ENA spectrum from the new simulations much better matches the observations over a broad range of energies. We conclude that the hybrid simulations provide reasonable predictions for the distribution of charged particles in the energy range from ~0.5 to 50 keV.more » « less
-
Abstract The shape of the heliosphere is currently under active debate. Energetic neutral atoms (ENAs) offer the best method for investigating the global structure of the heliosphere. To date, the Interstellar Boundary Explorer (IBEX) and the Ion and Neutral Camera (INCA) that was on board Cassini provide the only global ENA observations of the heliosphere. While extensive modeling has been done at IBEX-Hi energies (0.52–6 keV), no global ENA modeling has been conducted for INCA energies (5.2–55 keV). Here, we use an ENA model of the heliosphere based on hybrid results that capture the heating and acceleration of pickup ions (PUIs) at the termination shock to compare modeled global ENA results with IBEX-Hi and INCA observations using both a long- and short-tail model of the heliosphere. We find that the modeled ENA results for the two heliotail configurations produce similar results from the IBEX-Hi through the INCA energies. We conclude from our modeled ENAs, which only include PUI acceleration at the termination shock, that ENA observations in currently available energy ranges are insufficient for probing the shape and length of the heliotail. However, as a prediction for the future IMAP-Ultra mission (3–300 keV) we present modeled ENA maps at 80 keV, where the cooling length (∼600 au) is greater than the distance where the long- and short-heliotail models differ (∼400 au), and find that IMAP-Ultra should be able to identify the shape of the heliotail, predicting differences in the north lobe to downwind flux ratio between the models at 48%.more » « less
-
Abstract Interstellar neutrals (ISNs), pick-up ions (PUIs), and energetic neutral atoms (ENAs) are fundamental constituents of the heliosphere and its interaction with the neighboring interstellar medium. Here, we focus on selected aspects of present-day theory and modeling of these particles. In the last decades, progress in the understanding of the role of PUIs and ENAs for the global heliosphere and its interaction with very local interstellar medium is impressive and still growing. The increasing number of measurements allows for verification and continuing development of the theories and model attempts. We present an overview of various model descriptions of the heliosphere and the processes throughout it including the kinetic, fluid, and hybrid solutions. We also discuss topics in which interplay between theory, models, and interpretation of measurements reveals the complexity of the heliosphere and its understanding. They include model-based interpretation of the ISN, PUI, and ENA measurements conducted from the Earth’s vicinity. In addition, we describe selected processes beyond the Earth’s orbit up to the heliosphere boundary regions, where PUIs significantly contribute to the complex system of the global heliosphere and its interaction with the VLISM.more » « less
-
The role of pickup ions (PUIs) in the solar wind interaction with the local interstellar medium is investigated with 3D, multifluid simulations. The flow of the mixture of all charged particles is described by the ideal MHD equations, with the source terms responsible for charge exchange between ions and neutral atoms. The thermodynamically distinct populations of neutrals are governed by individual sets of gas dynamics Euler equations. PUIs are treated as a separate, comoving fluid. Because the anisotropic behavior of PUIs at the heliospheric termination shocks is not described by the standard conservation laws (a.k.a. the Rankine–Hugoniot relations), we derived boundary conditions for them, which are obtained from the dedicated kinetic simulations of collisionless shocks. It is demonstrated that this approach to treating PUIs makes the computation results more consistent with observational data. In particular, the PUI pressure in the inner heliosheath (IHS) becomes higher by ∼40%–50% in the new model, as compared with the solutions where no special boundary conditions are applied. Hotter PUIs eventually lead to charge-exchange-driven cooling of the IHS plasma, which reduces the IHS width by ∼15% (∼8–10 au) in the upwind direction, and even more in the other directions. The density of secondary neutral atoms born in the IHS decreases by ∼30%, while their temperature increases by ∼60%. Simulation results are validated with New Horizons data at distances between 11 and 47 au.more » « less
An official website of the United States government

