The shape of the heliosphere is currently under active debate. Energetic neutral atoms (ENAs) offer the best method for investigating the global structure of the heliosphere. To date, the Interstellar Boundary Explorer (IBEX) and the Ion and Neutral Camera (INCA) that was on board Cassini provide the only global ENA observations of the heliosphere. While extensive modeling has been done at IBEX-Hi energies (0.52–6 keV), no global ENA modeling has been conducted for INCA energies (5.2–55 keV). Here, we use an ENA model of the heliosphere based on hybrid results that capture the heating and acceleration of pickup ions (PUIs) at the termination shock to compare modeled global ENA results with IBEX-Hi and INCA observations using both a long- and short-tail model of the heliosphere. We find that the modeled ENA results for the two heliotail configurations produce similar results from the IBEX-Hi through the INCA energies. We conclude from our modeled ENAs, which only include PUI acceleration at the termination shock, that ENA observations in currently available energy ranges are insufficient for probing the shape and length of the heliotail. However, as a prediction for the future IMAP-Ultra mission (3–300 keV) we present modeled ENA maps at 80more »
This content will become publicly available on April 1, 2023
- Publication Date:
- NSF-PAR ID:
- 10329920
- Journal Name:
- Space Science Reviews
- Volume:
- 218
- Issue:
- 3
- ISSN:
- 0038-6308
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Interstellar neutral atoms propagating into the heliosphere experience charge exchange with the supersonic solar wind (SW) plasma, generating ions that are picked up by the SW. These pickup ions (PUIs) constitute ∼25% of the proton number density by the time they reach the heliospheric termination shock (HTS). Preferential acceleration of PUIs at the HTS leads to a suprathermal, kappa-like PUI distribution in the heliosheath, which may be further heated in the heliosheath by traveling shocks or pressure waves. In this study, we utilize a dynamic, 3D magnetohydrodynamic model of the heliosphere to show that dynamic heating of PUIs at the HTS and in the inner heliosheath (IHS), as well as a background source of energetic neutral atoms (ENAs) from outside the heliopause, can explain the heliospheric ENA signal observed by the Interstellar Boundary Explorer (IBEX) in the Voyager 2 direction. We show that the PUI heating process at the HTS is characterized by a polytropic index larger than 5/3, likely ranging between
γ ∼ 2.3 and 2.7, depending on the time in solar cycle 24 and SW conditions. The ENA fluxes at energies >1.5 keV show large-scale behavior in time with the solar cycle and SW dynamic pressure, whereas ENAs <more » -
Abstract Interstellar pickup ions are an ubiquitous and thermodynamically important component of the solar wind plasma in the heliosphere. These PUIs are born from the ionization of the interstellar neutral gas, consisting of hydrogen, helium, and trace amounts of heavier elements, in the solar wind as the heliosphere moves through the local interstellar medium. As cold interstellar neutral atoms become ionized, they form an energetic ring beam distribution comoving with the solar wind. Subsequent scattering in pitch angle by intrinsic and self-generated turbulence and their advection with the radially expanding solar wind leads to the formation of a filled-shell PUI distribution, whose density and pressure relative to the thermal solar wind ions grows with distance from the Sun. This paper reviews the history of in situ measurements of interstellar PUIs in the heliosphere. Starting with the first detection in the 1980s, interstellar PUIs were identified by their highly nonthermal distribution with a cutoff at twice the solar wind speed. Measurements of the PUI distribution shell cutoff and the He focusing cone, a downwind region of increased density formed by the solar gravity, have helped characterize the properties of the interstellar gas from near-Earth vantage points. The preferential heating of interstellar PUIsmore »
-
Abstract Our understanding of the interaction of the large-scale heliosphere with the local interstellar medium (LISM) has undergone a profound change since the very earliest analyses of the problem. In part, the revisions have been a consequence of ever-improving and widening observational results, especially those that identified the entrance of interstellar material and gas into the heliosphere. Accompanying these observations was the identification of the basic underlying physics of how neutral interstellar gas and interstellar charged particles of different energies, up to and including interstellar dust grains, interacted with the temporal flows and electromagnetic fields of the heliosphere. The incorporation of these various basic effects into global models of the interaction, whether focused on neutral interstellar gas and pickup ions, energetic particles such as anomalous and galactic cosmic rays, or magnetic fields and large-scale flows, has profoundly changed our view of how the heliosphere and LISM interact. This article presents a brief history of the conceptual and observation evolution of our understanding of the interaction of the heliosphere with the local interstellar medium, up until approximately 1996.
-
Turbulence is ubiquitous in space plasmas. It is one of the most important subjects in heliospheric physics, as it plays a fundamental role in the solar wind—local interstellar medium interaction and in controlling energetic particle transport and acceleration processes. Understanding the properties of turbulence in various regions of the heliosphere with vastly different conditions can lead to answers to many unsolved questions opened up by observations of the magnetic field, plasma, pickup ions, energetic particles, radio and UV emissions, and so on. Several space missions have helped us gain preliminary knowledge on turbulence in the outer heliosphere and the very local interstellar medium. Among the past few missions, the Voyagers have paved the way for such investigations. This paper summarizes the open challenges and voices our support for the development of future missions dedicated to the study of turbulence throughout the heliosphere and beyond.