skip to main content


Title: Engineering Innovations, Challenges, and Opportunities for Lignocellulosic Biorefineries: Leveraging Biobased Polymer Production
Alternative polymer feedstocks are highly desirable to address environmental, social, and security concerns associated with petrochemical-based materials. Lignocellulosic biomass (LCB) has emerged as one critical feedstock in this regard because it is an abundant and ubiquitous renewable resource. LCB can be deconstructed to generate valuable fuels, chemicals, and small molecules/oligomers that are amenable to modification and polymerization. However, the diversity of LCB complicates the evaluation of biorefinery concepts in areas including process scale-up, production outputs, plant economics, and life-cycle management. We discuss aspects of current LCB biorefinery research with a focus on the major process stages, including feedstock selection, fractionation/deconstruction, and characterization, along with product purification, functionalization, and polymerization to manufacture valuable macromolecular materials. We highlight opportunities to valorize underutilized and complex feedstocks, leverage advanced characterization techniques to predict and manage biorefinery outputs, and increase the fraction of biomass converted into valuable products.  more » « less
Award ID(s):
1934887
NSF-PAR ID:
10448725
Author(s) / Creator(s):
Date Published:
Journal Name:
Annual review of chemical and biomolecular engineering
Volume:
14
ISSN:
1947-5446
Page Range / eLocation ID:
109-40
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This study performs techno‐economic analysis and Monte Carlo simulations (MCS) to explore the effects that variations in biomass feedstock quality have on the economic feasibility of fast pyrolysis biorefineries using decentralized preprocessing sites (i.e., depots that produce pellets). Two biomass resources in the Southeastern United States, that is, pine residues and switchgrass, were examined as feedstocks. A scenario analysis was conducted for an array of different combinations, including different pellet ash control levels, feedstock blending ratios, different biorefinery capacities, and different biorefinery on‐stream capacities, followed by a comparison with the traditional centralized system. MCS results show that, with depot preprocessing, variations in the feedstock moisture and feedstock ash content can be significantly reduced compared with a traditional centralized system. For a biorefinery operating at 100% of its designed capacity, the minimum fuel selling price (MFSP) of the decentralized system is $3.97–$4.39 per gallon gasoline equivalent (GGE) based on the mean value across all scenarios, whereas the mean MFSP for the traditional centralized system was $3.79–$4.12/GGE. To understand the potential benefits of highly flowable pellets in decreasing biorefinery downtime due to feedstock handling and plugging problems, this study also compares the MFSP of the decentralized system at 90% of its designed capacity with a traditional system at 80%. The analysis illustrates that using low ash pellets mixed with switchgrass and pine residues generates a more competitive MFSP. Specifically, for a biorefinery designed for 2,000 oven dry metric ton per day, running a blended pellet made from 75% switchgrass and 25% pine residues with 2% ash level, and operating at 90% of designed capacity could make an MFSP between $4.49 and $4.71/GGE. In contrast, a traditional centralized biorefinery operating at 80% of designed capacity marks an MFSP between $4.72 and $5.28.

     
    more » « less
  2. Abstract

    We study a situation in which a multi‐feedstock cellulosic biofuel plant can procure stover from productive cropland and switchgrass from marginal land, where growing corn for stover is typically not profitable. We calibrate our model to growing conditions in a promising area of Indiana, USA. We find that cost‐minimizing biorefineries are likely to include switchgrass in the mix of feedstocks despite their high cost of production relative to corn stover. This is because the biorefinery can reduce cost by buying switchgrass grown on marginal land near the plant instead of paying to cover high transportation costs to procure stover from more distant suppliers. Moreover, the share of switchgrass will rise further if the procurement region is constrained by transaction costs or natural barriers. This is because procuring switchgrass can alleviate the cost of paying to induce land conversion to corn to procure additional stover from the intensive margin. Under the assumption that switchgrass is grown on marginal land, inclusion of switchgrass in the feedstock mix not only reduces the cost of producing biofuels but also their carbon footprint without displacing food crops. A key caveat is that high transaction costs of contracting for switchgrass and/or farmers’ reluctance to grow switchgrass on marginal land can severely undermine its inclusion in the feedstock mix. However, these forces may be countervailed by a differential subsidy for biofuels that include a higher share of switchgrass, which would be warranted because of their lower carbon footprint.

     
    more » « less
  3. Microbial cell factories offer an eco-friendly alternative for transforming raw materials into commercially valuable products because of their reduced carbon impact compared to conventional industrial procedures. These systems often depend on lignocellulosic feedstocks, mainly pentose and hexose sugars. One major hurdle when utilizing these sugars, especially glucose, is balancing carbon allocation to satisfy energy, cofactor, and other essential component needs for cellular proliferation while maintaining a robust yield. Nearly half or more of this carbon is inevitably lost as CO2 during the biosynthesis of regular metabolic necessities. This loss lowers the production yield and compromises the benefit of reducing greenhouse gas emissions—a fundamental advantage of biomanufacturing. This review paper posits the perspectives of using CO2 from the atmosphere, industrial wastes, or the exhausted gases generated in microbial fermentation as a feedstock for biomanufacturing. Achieving the carbon-neutral or -negative goals is addressed under two main strategies. The one-step strategy uses novel metabolic pathway design and engineering approaches to directly fix the CO2 toward the synthesis of the desired products. Due to the limitation of the yield and efficiency in one-step fixation, the two-step strategy aims to integrate firstly the electrochemical conversion of the exhausted CO2 into C1/C2 products such as formate, methanol, acetate, and ethanol, and a second fermentation process to utilize the CO2-derived C1/C2 chemicals or co-utilize C5/C6 sugars and C1/C2 chemicals for product formation. The potential and challenges of using CO2 as a feedstock for future biomanufacturing of fuels and chemicals are also discussed.

     
    more » « less
  4. null (Ed.)
    3D printing is an essential tool for rapid prototyping in a variety of sectors such as automotive and public health. The 3D printing market is booming, and it is projected that it will continue to thrive in the coming years. Unfortunately, this rapid growth has led to an alarming increase in the amount of 3D printed plastic waste. 3D printing processes such as stereolithography (SLA) and digital light projection (DLP) in particular generally produce petroleum-based thermosets that are further worsening the plastic pollution problem. To mitigate this 3D printed plastic waste, sustainable alternatives to current 3D printing materials must be developed. The present review provides a comprehensive overview of the sustainable advances in SLA/DLP 3D printing to date and offers a perspective on future directions to improve sustainability in this field. The entire life cycle of 3D printed parts has been assessed by considering the feedstock selection and the end-of-use of the material. The feedstock selection section details how renewable feedstocks (from lignocellulosic biomass, oils, and animal products) or waste feedstocks ( e.g. , waste cooking oil) have been used to develop SLA/DLP resins. The end-of-use section describes how materials can be reprocessed ( e.g. thermoplastic materials or covalent adaptable networks) or degraded (through enzymatic or acid/base hydrolysis of sensitive linkages) after end-of-use. In addition, studies that have employed green chemistry principles in their resin synthesis and/or have shown their sustainable 3D printed parts to have mechanical properties comparable to commercial materials have been highlighted. This review also investigates how aspects of sustainability such as recycling for feedstock/end-of-use or biodegradation of 3D printed parts in natural environments can be incorporated as future research directions in SLA/DLP. 
    more » « less
  5. Here, we report a novel ammonia : ammonium salt solvent based pretreatment process that can rapidly dissolve crystalline cellulose into solution and eventually produce highly amorphous cellulose under near-ambient conditions. Pre-activating the cellulose I allomorph to its ammonia–cellulose swollen complex (or cellulose III allomorph) at ambient temperatures facilitated rapid dissolution of the pre-activated cellulose in the ammonia-salt solvent ( i.e. , ammonium thiocyanate salt dissolved in liquid ammonia) at ambient pressures. For the first time in reported literature, we used time-resolved in situ neutron scattering methods to characterize the cellulose polymorphs structural modification and understand the mechanism of crystalline cellulose dissolution into a ‘molecular’ solution in real-time using ammonia-salt solvents. We also used molecular dynamics simulations to provide insight into solvent interactions that non-covalently disrupted the cellulose hydrogen-bonding network and understand how such solvents are able to rapidly and fully dissolve pre-activated cellulose III. Importantly, the regenerated amorphous cellulose recovered after pretreatment was shown to require nearly ∼50-fold lesser cellulolytic enzyme usage compared to native crystalline cellulose I allomorph for achieving near-complete hydrolytic conversion into soluble sugars. Lastly, we provide proof-of-concept results to further showcase how such ammonia-salt solvents can pretreat and fractionate lignocellulosic biomass like corn stover under ambient processing conditions, while selectively co-extracting ∼80–85% of total lignin, to produce a highly digestible polysaccharide-enriched feedstock for biorefinery applications. Unlike conventional ammonia-based pretreatment processes ( e.g. , Ammonia Fiber Expansion or Extractive Ammonia pretreatments), the proposed ammonia-salt process can operate at near-ambient conditions to greatly reduce the pressure/temperature severity necessary for conducting effective ammonia-based pretreatments on lignocellulose. 
    more » « less