skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: How do we know how smart AI systems are?
In 1967, Marvin Minksy, a founder of the field of artificial intelligence (AI), made a bold prediction: “Within a generation…the problem of creating ‘artificial intelligence’ will be substantially solved.” Assuming that a generation is about 30 years, Minsky was clearly overoptimistic. But now, nearly two generations later, how close are we to the original goal of human-level (or greater) intelligence in machines?  more » « less
Award ID(s):
2139983
PAR ID:
10448739
Author(s) / Creator(s):
Date Published:
Journal Name:
Science
Volume:
381
Issue:
6654
ISSN:
0036-8075
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This research paper will discuss the various technological innovations that have been developed within the past, are being developed in the present and will be developed in the future to bring progressive change within the healthcare industry. In particular, the way artificial intelligence and deep learning has brought about new methods for making task more efficient, less time consuming, and possibly more accurate. This study will discuss the different positive and negative effects of these technological methods to best see how artificial intelligence (AI) and deep learning is impacting the health industry in all areas. With supportive interviews from medical professionals, data scientist, and machine learning researchers, the analysis of real-world experiences and scenarios will provide more insight to what is beneficial or ineffective. The study utilizes extensive literary works to examine in detail the current AI and deep learning new approach to medicine, the risk and ethical concerns, the technological challenges from determining the best algorithms, and myths versus reality surrounded by this subject. 
    more » « less
  2. The importance of machine learning (ML) in scientific discovery is growing. In order to prepare the next generation for a future dominated by data and artificial intelligence, we need to study how ML can improve K-12 students’ scientific discovery in STEM learning and how to assist K-12 teachers in designing ML-based scientific discovery (SD) learning activities. This study proposes research ideas and provides initial findings on the relationship between different ML components and young learners’ scientific investigation behaviors. Results show that cluster analysis is promising for supporting pattern interpretation and scientific communication behaviors. The levels of cognitive complexity are associated with different ML-powered SD and corresponding learning support is needed. The next steps include a further co-design study between K-12 STEM teachers and ML experts and a plan for collecting and analyzing data to further understand the connection between ML and SD. 
    more » « less
  3. A hallmark of human intelligence is the ability to understand and influence other minds. Humans engage in inferential social learning (ISL) by using commonsense psychology to learn from others and help others learn. Recent advances in artificial intelligence (AI) are raising new questions about the feasibility of human–machine interactions that support such powerful modes of social learning. Here, we envision what it means to develop socially intelligent machines that can learn, teach, and communicate in ways that are characteristic of ISL. Rather than machines that simply predict human behaviours or recapitulate superficial aspects of human sociality (e.g. smiling, imitating), we should aim to build machines that can learn from human inputs and generate outputs for humans by proactively considering human values, intentions and beliefs. While such machines can inspire next-generation AI systems that learn more effectively from humans (as learners) and even help humans acquire new knowledge (as teachers), achieving these goals will also require scientific studies of its counterpart: how humans reason about machine minds and behaviours. We close by discussing the need for closer collaborations between the AI/ML and cognitive science communities to advance a science of both natural and artificial intelligence. This article is part of a discussion meeting issue ‘Cognitive artificial intelligence’. 
    more » « less
  4. Since the surge of data in materials-science research and the advancement in machine learning methods, an increasing number of researchers are introducing machine learning techniques into the next generation of materials discovery, ranging from neural-network learned potentials to automated characterization techniques for experimental images. In this snapshot review, we first summarize the landscape of techniques for soft materials assembly design that do not employ machine learning or artificial intelligence and then discuss specific machine learning and artificial-intelligence-based methods that enhance the design pipeline, such as high-throughput crystal-structure characterization and the inverse design of building blocks for materials assembly and properties. Additionally, we survey the landscape of current developments of scientific software, especially in the context of their compatibility with traditional molecular-dynamics engines such as LAMMPS and HOOMD-blue. 
    more » « less
  5. The recent surge in interest in ethics in artificial intelligence may leave many educators wondering how to address moral, ethical, and philosophical issues in their AI courses. As instructors we want to develop curriculum that not only prepares students to be artificial intelligence practitioners, but also to understand the moral, ethical, and philosophical impacts that artificial intelligence will have on society. In this article we provide practical case studies and links to resources for use by AI educators. We also provide concrete suggestions on how to integrate AI ethics into a general artificial intelligence course and how to teach a stand-alone artificial intelligence ethics course. 
    more » « less