Abstract All‐sky imagers located in Asiago, Italy (45.87oN, 11.53oE; 40.7omagnetic latitude) and Sutherland, South Africa (32.37oS, 20.81oE; −40.7omagnetic latitude) are used to study magnetically conjugate medium scale traveling ionospheric disturbances (MSTIDs). We present initial results from the first year of joint Asiago‐Sutherland data sets from July 2016 to June 2017. The 630.0‐nm airglow perturbations showing different kinds of waves were frequently observed. Some of these wave events resemble MSTIDs propagating south‐westward in Asiago, typical direction observed at other longitude sectors in the northern hemisphere. They are mostly observed as single bands propagating through the field of view of the all‐sky imagers. We select and analyze five cases of magnetically conjugate bands associated with MSTIDs. The bands observed at Sutherland move mainly westward, noticeably different from the north‐west direction of propagation of MSTIDs observed in the southern hemisphere. We compare the MSTIDs propagation speeds and find that three cases show larger values at Sutherland. When we compare the zonal speeds all the cases show larger values at Sutherland. On average, the propagation speed at Sutherland is 20% larger and the zonal speed is ~35% larger. The westward motion at Sutherland is explained by taking onto account how its magnetic declination (~24oW) affects the orientation of the bands. The larger speed at Sutherland is due to the weaker Earth's magnetic field in the southern hemisphere and the particular configuration of the magnetic field lines in this longitude sector.
more »
« less
All‐Sky Imaging Observations and Modeling of Bright 630‐nm Airglow Structures Associated With MSTIDs
Abstract An all‐sky imager at El Leoncito Observatory (−31.8°, 69.3°W, 18.2° magnetic latitude) is used to study 630.0‐nm airglow emissions related to medium‐scale traveling ionospheric disturbances (MSTIDs). On the night of 6 December 2007 an unusual event consisting of bright bands propagating northwestward was observed. Enhancements in total electron content from ground‐based Global Positioning System receivers were observed collocated with the bright airglow bands. A regional Global Positioning System‐derived total electron content map matches the direction of motion, scale size, and location of these bright bands. Model results includingFregion coupling withEregion structures reproduce the characteristics of the bright bands. Specific conditions in theEregion must exist in order to observe these unusual MSTIDs consisting of propagating bright bands only.
more »
« less
- Award ID(s):
- 1659304
- PAR ID:
- 10448838
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 124
- Issue:
- 8
- ISSN:
- 2169-9380
- Page Range / eLocation ID:
- p. 7332-7340
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Medium‐scale Traveling Ionospheric Disturbances (MSTIDs) are prominent and ubiquitous features of the mid‐latitude ionosphere, and are observed in Super Dual Auroral Radar Network (SuperDARN) and high‐resolution Global Navigational Satellite Service (GNSS) Total Electron Content (TEC) data. The mechanisms driving these MSTIDs are an open area of research, especially during geomagnetic storms. Previous studies have demonstrated that nightside MSTIDs are associated with an electrodynamic instability mechanism like Perkins, especially during geomagnetically quiet conditions. However, dayside MSTIDs are often associated with atmospheric gravity waves. Very few studies have analyzed the mechanisms driving MSTIDs during strong geomagnetic storms at mid‐latitudes. In this study, we present mid‐latitude MSTIDs observed in de‐trended GNSS TEC data and SuperDARN radars over the North American sector, during a geomagnetic storm (peakKpreaching 9) on 7–8 September 2017. In SuperDARN, MSTIDs were observed in ionospheric backscatter with Line of Sight (LOS) velocities exceeding 800 m/s. Additionally, radar LOS velocities oscillated with amplitudes reaching ±500 m/s as the MSTIDs passed through the fields‐of‐view. In detrended TEC, these MSTIDs produced perturbations reaching ∼50 percent of background TEC magnitude. The MSTIDs were observed to propagate in the westward/south‐westward direction with a time period of ∼15 min. Projecting de‐trended GNSS TEC data along SuperDARN beams showed that enhancements in TEC were correlated with enhancements in SuperDARN SNR and positive LOS velocities. Finally, SuperDARN LOS velocities systematically switched polarities between the crests and the troughs of the MSTIDs, indicating the presence of polarization electric fields and an electrodynamic instability process during these MSTIDs.more » « less
-
Abstract We describe observations of a trend between the level of km‐scale irregularity activity and the amplitudes of medium‐scale traveling ionospheric disturbances (MSTIDs) at mid‐latitudes using data from December 2019 through June 2021. These include measurements of both heigh‐specific and vertically integrated quantities. Region‐specific, bottom‐side measurements were made with the dynasonde system near Wallops Island (WI) and included phase structure function parameters related to km‐scale irregularities as well as height‐specific tilts/density gradients, which are especially sensitive to MSTIDs. A complementary data set was derived from the nearby Deployable Low‐band Ionosphere and Transient Experiment (DLITE) array in southern Maryland. The DLITE array was used to measure the vertically integrated irregularity index,CkL, via scintillometry of bright cosmic radio sources at 35 MHz. Transverse gradients in the line‐of‐sight total electron content (TEC) were also measured with DLITE using apparent shifts in the sources' sky positions. Relatively simple layer‐based models for the vertical distribution of km‐scale irregularities applied to dynasonde‐measured properties yielded results that correlated well with DLITE measurements ofCkL. Similarly, spectral analysis showed that fluctuation amplitudes of vertically integrated bottom‐side density gradients derived from dynasonde data were well correlated with DLITE TEC gradient measurements. A significant trend was found betweenCkLand TEC gradient MSTID amplitudes among DLITE‐based data as well as among the extrapolated dynasonde measurements. Additionally, within the bottom‐side F‐region, irregularity levels were found to be well correlated with fluctuation amplitudes for the tilt as measured with the WI dynasonde.more » « less
-
Abstract We investigate the correlation of sporadic E (Es) with the occurrence of medium‐scale traveling ionospheric disturbances (MSTIDs) at night in middle latitudes (25°–40°N and 25°–40°S magnetic latitudes) by examining their occurrence climatology. The occurrence climatology of Es and MSTIDs is derived using the Challenging Minisatellite Payload satellite data acquired in 2001–2008 and 2001–2009, respectively. Electron density irregularities and radio scintillations are used as the detection proxies of MSTIDs and Es, respectively. The occurrence rate of MSTIDs shows a semi‐annual variation with the primary peak during June solstices and the secondary peak during December solstices in both hemispheres. However, the occurrence rate of Es shows a seasonal variation with a pronounced peak in summer in both hemispheres. The occurrence of MSTIDs during local summer and equinoxes is correlated with the occurrence of local Es, but the high occurrence rate of MSTIDs in local winter is not correlated with local winter hemisphere Es. MSTIDs in the winter hemisphere are correlated with magnetically conjugate MSTIDs in the summer hemisphere; these summer hemisphere MSTIDs are correlated with the occurrence of Es in the summer hemisphere. The occurrence rate of MSTIDs clearly shows an increase with decreasing solar activity, but the solar cycle dependence of Es is not obvious from the data. This observation suggests that the generation of MSTIDs is significantly affected by factors other than Es such as the growth rate of the Perkins instability, atmospheric gravity waves, and theFregion conductance.more » « less
-
Abstract This work investigates mid‐ and low‐latitude ionospheric disturbances over the American sector during a moderate but geo‐effective geomagnetic storm on 13–14 March 2022 (π‐Day storm), using ground‐based Global Navigation Satellite System total electron content data, ionosonde observations, and space‐borne measurements from the Global‐scale Observations of Limb and Disk (GOLD), Swarm, the Defense Meteorological Satellite Program (DMSP), and the Ionospheric Connection Explorer (ICON) satellites. Our results show that this modest but geo‐effective storm created a number of large ionospheric disturbances, especially the dynamic multi‐scale electron density gradient features in the storm main phase as follows: (a) The low‐latitude equatorial ionization anomaly (EIA) exhibited a dramatic storm‐time deformation and reformation, where the EIA crests evolved into a bright equatorial band for 1–2 hr and then quickly separated back into the typical double‐crest structure with a broad crest width and deep equatorial trough. (b) Strong equatorial plasma bubbles (EPBs) occurred with an abnormally high latitude/altitude extension, reaching the geomagnetic latitude of ∼30°, corresponding to an Apex height of 2,600 km above the dip equator. (c) The midlatitude ionosphere experienced a conspicuous storm‐enhanced density (SED) plume structure associated with the subauroral polarization stream (SAPS). This SED/SAPS feature showed an unusual temporal variation that intensified and diminished twice. These distinct mid‐ and low‐latitude ionospheric disturbances could be attributed to the storm‐time electrodynamic effect of electric field perturbation, along with contributions from neutral dynamics and thermospheric composition change.more » « less
An official website of the United States government
