A learner-centered higher education ecosystem is essential to effective educational outcomes and societal advancement. Mobile devices such as smartphones, tablets, and tablet computers enable learning anytime and from any location, blurring the boundaries between formal and informal learning. When paired with effective pedagogy, mobile technologies can positively impact the teaching and learning experience for students in high-demand science, technology, engineering and mathematics (STEM) disciplines, increasing the flexibility and ease with which they are able to pursue their education while developing their professional identities as engineers. Student retention remains a problem in STEM programs. In engineering, many students do not even make it past their core courses. This poster reports on initial efforts of a two-year research study to utilize mobile technologies and a technology-enhanced curriculum to improve student engagement and learning in STEM undergraduate courses. This (work in progress) poster describes a quasi-experimental mixed methods study on implementing mobile devices (iPad and Pencil) and a technology-enhanced curriculum in an undergraduate thermal-fluids engineering course, a foundational engineering class. Research has indicated that engineering students’ performance in foundational courses is a predictor of future academic success. 
                        more » 
                        « less   
                    
                            
                            Mobile Learning in STEM: A Case Study in an Undergraduate Engineering Course
                        
                    
    
            Student-centered educational system is needed for better educational outcomes. Technology enabled pedagogy has helped immensely during the pandemic times when rapid transition to remote learning was essential. This poster reports findings on year one of a two-year research study to utilize mobile technologies and a technology-enhanced curriculum to improve student engagement and learning in STEM undergraduate courses. This poster describes a quasi-experimental mixed methods study on implementing mobile devices (iPad and Pencil) and a technology-enhanced curriculum in an undergraduate thermal-fluids engineering course, a foundational engineering class. The technology-enabled curriculum was fully integrated in the thermal-fluids course to deliver content and to facilitate student engagement with the content, instructor, and fellow students. This approach leveraged the social-constructivist learning theory - a connected community of learners with classroom peers and co-construction of knowledge where the instructor’s role is that of a subject matter expert who facilitates learning. To examine the impact of mobile devices on student learning, in this two-year study (year one fall 2021 - spring 2022), the following research questions were addressed, hypothesizing improvements in the areas of engagement, enhancement of learning outcomes, and extension of learning to real-life engineering scenarios: (1) Does mobile device use facilitate engagement in thermal-fluid science course content? (Engagement), (2) Does mobile device use increase learning of identified difficult concepts in thermal-fluid science courses as indicated by increased achievement scores? (Enhancement) and (3) What are student perceptions of using mobile devices for solving real-life problems? This poster will provide an overview of the research plan and describe some preliminary research efforts based on year 1 of the project efforts. This work is supported by the NSF: Research Initiation in Engineering Formation (RIEF). 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2106345
- PAR ID:
- 10448867
- Date Published:
- Journal Name:
- 2023 ASEE Annual Conference & Exposition
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The COVID-19 pandemic has affected learning at all levels; particularly, in higher education, where levels of independence and self-motivation are required during distance learning. In engineering, distance learning adds another degree of difficulty to an already complex field. Comprehension in engineering requires the repeated use of diagrams, high-level charts, and practice problems. Mobile devices, combined with a technology-enhanced curriculum, provide an excellent platform for learning in engineering as it allows for clear illustration and the transfer of complex ideas at any time and place. In alignment with the social-constructivist framework, these facets of mobile technology provide additional avenues for student engagement and the extension of learning goals. This study utilized the Triple E Framework and a mixed methods approach to investigate the impact of mobile devices on engineering students’ learning in a thermal-fluids course. The overall aim was to understand how mobile technology, combined with a technology-enhanced curriculum, impacts engineering students’ engagement, enhancement, and extension of learning. Findings reveal that students perceived increased levels of engagement when utilizing mobile devices in their learning practices. However, instructional methods were identified to be the key factor leading to engagement. A small effect size of 0.37 was noticed, and a post hoc power analysis resulted in a test power of 0.55. Though a significant difference between students who did and did not utilize mobile devices was not apparent, students with university loaned tablets (iPads) had a larger increase in learning than students without. This paper is based on the author's master's thesis titled “Affordances of Mobile Technology to Facilitate Learning in Undergraduate Thermal-Fluid Sciences,” the represented data reflects content from the same.more » « less
- 
            This poster will report on the research design and methodology planned for a recently funded National Science Foundation-sponsored project focused on advancing knowledge about the factors that influence the decisions of undergraduate engineering student to complete (rather than drop out of) online courses. Through the application of both social science and learner analytics-based research methods, the research will explore how students’ perceptions about the characteristics of their online undergraduate engineering courses and engagement with their course learning management system (LMS) influence their persistence. To support these studies, we draw on the undergraduate engineering student population at a large, public university in the southwestern United States that has been an early adopter of comprehensive online undergraduate engineering education. The findings from this work will be both important and timely, as the field of engineering education shows signs of embracing the online presence critical to increasing access and participation in engineering.more » « less
- 
            This poster will report on the research design and methodology planned for a recently funded National Science Foundation-sponsored project focused on advancing knowledge about the factors that influence the decisions of undergraduate engineering student to complete (rather than drop out of) online courses. Through the application of both social science and learner analytics-based research methods, the research will explore how students’ perceptions about the characteristics of their online undergraduate engineering courses and engagement with their course learning management system (LMS) influence their persistence. To support these studies, we draw on the undergraduate engineering student population at a large, public university in the southwestern United States that has been an early adopter of comprehensive online undergraduate engineering education. The findings from this work will be both important and timely, as the field of engineering education shows signs of embracing the online presence critical to increasing access and participation in engineering.more » « less
- 
            Incorporating real-life context through connections to research early in the curriculum can create meaningful learning opportunities that encourage students to engage deeply with classroom content to construct chemistry knowledge. Course-based undergraduate research experiences have been successful at integrating real-life context, but are often only incorporated into upper-level courses. To provide an additional pathway to foster interaction with research, four activities from an introductory chemistry discussion class were created to incorporate authentic research connections. Care was taken to incorporate metacognitive questions designed to help students make connections between their preexisting knowledge and course content. Marzano’s taxonomy was used to analyze the cognitive complexity of tasks, which increased in the revised activities, allowing for more opportunities for knowledge construction. Audio and written work of student groups as they worked through activities was collected. Qualitative analysis of student engagement revealed that control over the content of activities to incorporate opportunities for knowledge construction is not enough to facilitate students consciously engaging in meaningful learning. If instructors wish to promote students integrating chemistry knowledge into their existing framework, course instructors, including graduate teaching assistants, need to be trained on how to properly facilitate classroom experiences to increase the likelihood of success.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    