skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Solving multi-model MDPs by coordinate ascent and dynamic programming
Multi-model Markov decision process (MMDP) is a promising framework for computing policies that are robust to parameter uncertainty in MDPs. MMDPs aim to find a policy that maximizes the expected return over a distribution of MDP models. Because MMDPs are NP-hard to solve, most methods resort to approximations. In this paper, we derive the policy gradient of MMDPs and propose CADP, which combines a coordinate ascent method and a dynamic programming algorithm for solving MMDPs. The main innovation of CADP compared with earlier algorithms is to take the coordinate ascent perspective to adjust model weights iteratively to guarantee monotone policy improvements to a local maximum. A theoretical analysis of CADP proves that it never performs worse than previous dynamic programming algorithms like WSU. Our numerical results indicate that CADP substantially outperforms existing methods on several benchmark problems.  more » « less
Award ID(s):
2144601 1815275
PAR ID:
10448879
Author(s) / Creator(s):
Date Published:
Journal Name:
Conference on Uncertainty in Artificial Intelligence
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a first solution to the problem of adaptive LQR for continuous-time linear periodic systems. Specifically, reinforcement learning and adaptive dynamic programming (ADP) techniques are used to develop two algorithms to obtain near-optimal controllers. Firstly, the policy iteration (PI) and value iteration (VI) methods are proposed when the model is known. Then, PI-based and VI-based off-policy ADP algorithms are derived to find near-optimal solutions directly from input/state data collected along the system trajectories, without the exact knowledge of system dynamics. The effectiveness of the derived algorithms is validated using the well-known lossy Mathieu equation. 
    more » « less
  2. null (Ed.)
    Variational algorithms have gained prominence over the past two decades as a scalable computational environment for Bayesian inference. In this article, we explore tools from the dynamical systems literature to study the convergence of coordinate ascent algorithms for mean field variational inference. Focusing on the Ising model defined on two nodes, we fully characterize the dynamics of the sequential coordinate ascent algorithm and its parallel version. We observe that in the regime where the objective function is convex, both the algorithms are stable and exhibit convergence to the unique fixed point. Our analyses reveal interesting discordances between these two versions of the algorithm in the region when the objective function is non-convex. In fact, the parallel version exhibits a periodic oscillatory behavior which is absent in the sequential version. Drawing intuition from the Markov chain Monte Carlo literature, we empirically show that a parameter expansion of the Ising model, popularly called the Edward–Sokal coupling, leads to an enlargement of the regime of convergence to the global optima. 
    more » « less
  3. We propose a broadly applicable variational inference algorithm for probabilistic models with binary latent variables, using sampling to approximate expectations required for coordinate ascent updates. Applied to three real-world models for text and image and network data, our approach converges much faster than REINFORCE-style stochastic gradient algorithms, and requires fewer Monte Carlo samples. Compared to hand-crafted variational bounds with model-dependent auxiliary variables, our approach leads to tighter likelihood bounds and greater robustness to local optima. Our method is designed to integrate easily with probabilistic programming languages for effective, scalable, black-box variational inference. 
    more » « less
  4. Meila, Marina; Zhang, Tong (Ed.)
    Black-box variational inference algorithms use stochastic sampling to analyze diverse statistical models, like those expressed in probabilistic programming languages, without model-specific derivations. While the popular score-function estimator computes unbiased gradient estimates, its variance is often unacceptably large, especially in models with discrete latent variables. We propose a stochastic natural gradient estimator that is as broadly applicable and unbiased, but improves efficiency by exploiting the curvature of the variational bound, and provably reduces variance by marginalizing discrete latent variables. Our marginalized stochastic natural gradients have intriguing connections to classic coordinate ascent variational inference, but allow parallel updates of variational parameters, and provide superior convergence guarantees relative to naive Monte Carlo approximations. We integrate our method with the probabilistic programming language Pyro and evaluate real-world models of documents, images, networks, and crowd-sourcing. Compared to score-function estimators, we require far fewer Monte Carlo samples and consistently convergence orders of magnitude faster. 
    more » « less
  5. We study Markov potential games under the infinite horizon average reward criterion. Most previous studies have been for discounted rewards. We prove that both algorithms based on independent policy gradient and independent natural policy gradient converge globally to a Nash equilibrium for the average reward criterion. To set the stage for gradient-based methods, we first establish that the average reward is a smooth function of policies and provide sensitivity bounds for the differential value functions, under certain conditions on ergodicity and the second largest eigenvalue of the underlying Markov decision process (MDP). We prove that three algorithms, policy gradient, proximal-Q, and natural policy gradient (NPG), converge to an ϵ-Nash equilibrium with time complexity O(1ϵ2), given a gradient/differential Q function oracle. When policy gradients have to be estimated, we propose an algorithm with ~O(1mins,aπ(a|s)δ) sample complexity to achieve δ approximation error w.r.t~the ℓ2 norm. Equipped with the estimator, we derive the first sample complexity analysis for a policy gradient ascent algorithm, featuring a sample complexity of ~O(1/ϵ5). Simulation studies are presented. 
    more » « less