skip to main content

Title: Underappreciated plant vulnerabilities to heat waves

With climate change, heat waves are becoming increasingly frequent, intense and broader in spatial extent. However, while the lethal effects of heat waves on humans are well documented, the impacts on flora are less well understood, perhaps except for crops. We summarize recent findings related to heat wave impacts including: sublethal and lethal effects at leaf and plant scales, secondary ecosystem effects, and more complex impacts such as increased heat wave frequency across all seasons, and interactions with other disturbances. We propose generalizable practical trials to quantify the critical bounding conditions of vulnerability to heat waves. Collectively, plant vulnerabilities to heat waves appear to be underappreciated and understudied, particularly with respect to understanding heat wave driven plant die‐off and ecosystem tipping points.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
New Phytologist
Page Range / eLocation ID:
p. 32-39
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Groundwater‐dependent ecosystems are often defined by the presence of deeply rooted phreatophytic plants. When connected to groundwater, phreatophytes in arid regions decouple ecosystem net primary productivity from precipitation, underscoring a disproportionately high biodiversity and exchange of resources relative to surrounding areas. However, groundwater‐dependent ecosystems are widely threatened due to the effects of water diversions, groundwater abstraction, and higher frequencies of episodic drought and heat waves. The resilience of these ecosystems to shifting ecohydrological–climatological conditions will depend largely on the capacity of dominant, phreatophytic plants to cope with dramatic reductions in water availability and increases in atmospheric water demand. This paper disentangles the broad range of hydraulic traits expressed by phreatophytic vegetation to better understand their capacity to survive or even thrive under shifting ecohydrological conditions. We focus on three elements of plant water relations: (a) hydraulic architecture (including root area to leaf area ratios and rooting depth), (b) xylem structure and function, and (c) stomatal regulation. We place the expression of these traits across a continuum of phreatophytic habits from obligate to semi‐obligate to semi‐facultative to facultative. Although many species occupy multiple phreatophytic niches depending on access to groundwater, we anticipate that populations are largely locally adapted to a narrow range of ecohydrological conditions regardless of gene flow across ecohydrological gradients. Consequently, we hypothesize that reductions in available groundwater and increases in atmospheric water demand will result in either (a) stand replacement of obligate phreatophytic species with more facultative species as a function of widespread mortality in highly groundwater‐dependent populations or (b) directional selection in semi‐obligate and semi‐facultative phreatophytes towards the expression of traits associated with highly facultative phreatophytes in the absence of species replacement. Anticipated shifts in the expression of hydraulic traits may have profound impacts on water cycling processes, species assemblages, and habitat structure of groundwater‐dependent woodlands and riparian forests.

    more » « less
  2. Abstract

    Extreme heat events are becoming more frequent and intense as climate variability increases, and these events inherently vary in their timing. We predicted that the timing of a heat wave would determine its consequences for insect communities owing to temporal variation in the susceptibility of host plants to heat stress. We subjected common milkweed (Asclepias syriaca) plants to in‐field experimental heat waves to investigate how the timing of heat waves, both seasonally and relative to a biotic stressor (experimental herbivory), affected their ecological consequences. We found that heat waves had multiyear, timing‐specific effects on plant–insect communities. Early‐season heat waves led to greater and more persistent effects on plants and herbivore communities than late‐season heat waves. Heat waves following experimental herbivory had reduced consequences. Our results show that extreme climate events can have complex, lasting ecological effects beyond the year of the event—and that timing is key to understanding those effects.

    more » « less
  3. Abstract

    When thermal tolerances differ between interacting species, extreme temperature events (heat waves) will alter the ecological outcomes. The parasitoid waspCotesia congregatasuffers high mortality when reared throughout development at temperatures that are nonstressful for its host,Manduca sexta. However, the effects of short‐term heat stress during parasitoid development are unknown in this host–parasitoid system.

    Here, we investigate how duration of exposure, daily maximum temperature, and the developmental timing of heat waves impact the performance ofC.congregataand its host¸M.sexta. We find that the developmental timing of short‐term heat waves strongly determines parasitoid and host outcomes.

    Heat waves during parasitoid embryonic development resulted in complete wasp mortality and the production of giant, long‐lived hosts. Heat waves during the 1st‐instar had little effect on wasp success, whereas heat waves during the parasitoid's nutritionally and hormonally critical 2nd instar greatly reduced wasp emergence and eclosion. The temperature and duration of heat waves experienced early in development determined what proportion of hosts had complete parasitoid mortality and abnormal phenotypes.

    Our results suggest that the timing of extreme temperature events will be crucial to determining the ecological impacts on this host–parasitoid system. Discrepancies in thermal tolerance between interacting species and across development will have important ramifications on ecosystem responses to climate change.

    more » « less
  4. Abstract Background and Aims

    The increased likelihood and severity of storm events has brought into focus the role of coastal ecosystems in provision of shoreline protection by attenuating wave energy. Canopy-forming kelps, including giant kelp (Macrocystis pyrifera), are thought to provide this ecosystem service, but supporting data are extremely limited. Previous in situ examinations relied mostly on comparisons between nominally similar sites with and without kelp. Given that other factors (especially seafloor bathymetry and topographic features) often differ across sites, efforts to isolate the effects of kelp on wave energy propagation confront challenges. In particular, it can be difficult to distinguish wave energy dissipation attributable to kelp from frictional processes at the seabed that often covary with the presence of kelp. Here, we use an ecological transition from no kelp to a full forest, at a single site with static bathymetry, to resolve unambiguously the capacity of giant kelp to damp waves.


    We measured waves within and outside rocky reef habitat, in both the absence and the presence of giant kelp, at Marguerite Reef, Palos Verdes, CA, USA. Nested within a broader kelp restoration project, this site transitioned from a bare state to one supporting a fully formed forest (density of 8 stipes m−2). We quantified, as a function of incident wave conditions, the decline in wave energy flux attributable to the presence of kelp, as waves propagated from outside and into reef habitat.

    Key Results

    The kelp forest damped wave energy detectably, but to a modest extent. Interactions with the seabed alone reduced wave energy flux, on average, by 12 ± 1.4 % over 180 m of travel. The kelp forest induced an additional 7 ± 1.2 % decrease. Kelp-associated declines in wave energy flux were slightly greater for waves of longer periods and smaller wave heights.


    Macrocystis pyrifera forests have a limited, albeit measurable, capacity to enhance shoreline protection from nearshore waves. Expectations that giant kelp forests, whether extant or enhanced through restoration, have substantial impacts on wave-induced coastal erosion might require re-evaluation.

    more » « less
  5. Abstract

    Evapotranspiration (ET) is a significant ecosystem flux, governing the partitioning of energy at the land surface. Understanding the seasonal pattern and magnitude ofETis critical for anticipating a range of ecosystem impacts, including drought, heat‐wave events, and plant mortality. In this study, we identified the relative controls of seasonal variability inET, and how these controls vary among ecosystems. We used overlapping AmeriFlux and PhenoCam time series at a daily timestep from 20 sites to explore these linkages (# site‐years >100), and our study area covered a broad climatological aridity gradient in the U.S. and Canada. We focused on disentangling the most important controls of bulk surface conductance (Gs) and evaporative fraction (EF = LE/[H + LE]), whereLEandHrepresent latent and sensible heat fluxes, respectively. Specifically, we investigated how vegetation phenology varied in importance relative to meteorological variables (vapor pressure deficit and antecedent precipitation) as a driver ofGsandEFusing path analysis, a framework for quantifying and comparing the causal linkages among multiple response and explanatory variables. Our results revealed that the drivers ofGsandEFseasonality varied significantly between energy‐ and water‐limited ecosystems. Specifically, precipitation had a much higher effect in water‐limited ecosystems, while seasonal patterns in canopy greenness emerged as a stronger control in energy‐limited ecosystems. Given that phenology is expected to shift under future climate, our findings provide key information for understanding and predicting how phenology may impact 21st‐century hydroclimate regimes and the surface‐energy balance.

    more » « less