skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: More Than Marine Heatwaves: A New Regime of Heat, Acidity, and Low Oxygen Compound Extreme Events in the Gulf of Alaska
Abstract Recent marine heatwaves in the Gulf of Alaska have had devastating impacts on species from various trophic levels. Due to climate change, total heat exposure in the upper ocean has become longer, more intense, more frequent, and more likely to happen at the same time as other environmental extremes. The combination of multiple environmental extremes can exacerbate the response of sensitive marine organisms. Our hindcast simulation provides the first indication that more than 20% of the bottom water of the Gulf of Alaska continental shelf was exposed to quadruple heat, positive hydrogen ion concentration [H+], negative aragonite saturation state (Ωarag), and negative oxygen concentration [O2] compound extreme events during the 2018–2020 marine heat wave. Natural intrusion of deep and acidified water combined with the marine heat wave triggered the first occurrence of these events in 2019. During the 2013–2016 marine heat wave, surface waters were already exposed to widespread marine heat and positive [H+] compound extreme events due to the temperature effect on the [H+]. We introduce a new Gulf of Alaska Downwelling Index (GOADI) with short‐term predictive skill, which can serve as indicator of past and near‐future positive [H+], negative Ωarag, and negative [O2] compound extreme events near the shelf seafloor. Our results suggest that the marine heat waves may have not been the sole environmental stressor that led to the observed ecosystem impacts and warrant a closer look at existing in situ inorganic carbon and other environmental data in combination with biological observations and model output.  more » « less
Award ID(s):
2141728 2322806 1656070 2224611 1757348
PAR ID:
10497238
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
AGU Advances
Edition / Version:
1
Volume:
5
Issue:
1
ISSN:
2576-604X
Page Range / eLocation ID:
12561
Format(s):
Medium: X Other: pdf
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Extreme wet-bulb temperatures (Tw) are often used as indicators of heat stress. However, humid heat extremes are fundamentally compound events, and a givenTwcan be generated by various combinations of temperature and humidity. Differentiating between extreme humid heat driven by temperature versus humidity is essential to identifying these extremes’ physical drivers and preparing for their distinct impacts. Here we explore the variety of combinations of temperature and humidity contributing to humid heat experienced across the globe. In addition to using traditional metrics, we derive a novel thermodynamic state variable named “stickiness.” Analogous to the oceanographic variable “spice” (which quantifies the relative contributions of temperature and salinity to a given water density), stickiness quantifies the relative contributions of temperature and specific humidity to a givenTw. Consistent across metrics, we find that high magnitudes ofTwtend to occur in the presence of anomalously high moisture, with temperature anomalies of secondary importance. This widespread humidity dependence is consistent with the nonlinear relationship between temperature and specific humidity as prescribed by the Clausius–Clapeyron relationship. Nonetheless, there is a range of stickiness observed at moderate-to-highTwthresholds. Stickiness allows a more objective evaluation of spatial and temporal variability in the temperature versus humidity dependence of humid heat than traditional variables. In regions with high temporal variability in stickiness, predictive skill for humid heat-related impacts may improve by considering fluctuations in atmospheric humidity in addition to dry-bulb temperature. Significance StatementExtreme humid heat increases the risk of heat stress through its influence over humans’ ability to cool down by sweating. Understanding whether humid heat extremes are generated more due to elevated temperature or humidity is important for identifying factors that may increase local risk, preparing for associated impacts, and developing targeted adaptation measures. Here we explore combinations of temperature and humidity across the globe using traditional metrics and by deriving a new variable called “stickiness.” We find that extreme humid heat at dangerous thresholds occurs primarily due to elevated humidity, but that stickiness allows for thorough analysis of the drivers of humid heat at lower thresholds, including identification of regions prone to low- or high-stickiness extremes. 
    more » « less
  2. Arctic ecosystems are affected by accelerated warming as well as the intensification of the hydrologic cycle, yet understanding of the impacts of compound climate extremes (e.g., simultaneous extreme heat and rainfall) remains limited, despite their high potential to alter ecosystems. Here, we show that the aquatic ecosystems in historically arid West Greenland have undergone an ecological transformation after a series of atmospheric rivers that simultaneously produced record heat and rainfall hit the region in autumn 2022. We analyzed a unique, long-term lake dataset and found that compound climate extremes pushed Arctic lakes across a tipping point. As terrestrial–aquatic linkages were strengthened, lakes synchronously transformed from “blue” lakes with high transparency and low pelagic primary production to “brown” in less than a year, owing to a large influx of dissolved organic material and metals, with iron concentrations increasing by more than two orders of magnitude. The browning of lake waters reduced light penetration by 50% across lakes. The resulting light limitation altered plankton distributions and community structure, including a major reduction in prokaryotic diversity and an increase in algal groups capable of metabolizing organic carbon sources. As a result, lakes shifted from being summer carbon sinks to sources, with a >350% increase in carbon dioxide flux from lakes to the atmosphere. The remarkably rapid, coherent transformation of these Arctic ecosystems underscores the synergistic and unpredictable impacts of compound extreme events and the importance of their seasonal timing, especially in regions with negative moisture balance. 
    more » « less
  3. Abstract. This study investigates the impact of global warming on heat and humidityextremes by analyzing 6 h output from 28 members of the Max PlanckInstitute Grand Ensemble driven by forcing from a 1 % yr−1 CO2 increase. We find that unforced variability drives large changes in regional exposure to extremes in different ensemble members, and these variations are mostly associated with El Niño–Southern Oscillation (ENSO) variability. However, while the unforced variability in the climate can alter the occurrence of extremes regionally, variability within the ensemble decreases significantly as one looks at larger regions or at a global population perspective. This means that, for metrics of extreme heat and humidity analyzed here, forced variability in the climate is more important than the unforced variability at global scales. Lastly, we found that most heat wave metrics will increase significantly between 1.5 and 2.0 ∘C, and that low gross domestic product (GDP) regions show significantly higher risks of facing extreme heat events compared to high GDP regions. Considering the limited economic adaptability of the population to heat extremes, this reinforces the idea that the most severe impacts of climate change may fall mostly on those least capable of adapting. 
    more » « less
  4. Abstract Although the intensity of extreme precipitation is predicted to increase with climate warming, at the weather scale precipitation extremes over most of the globe decrease when temperature exceeds a certain threshold, and the spatial extent of this negative scaling is projected to increase as the climate warms. The nature and cause of the negative scaling at high temperature and its implications remain poorly understood. Based on sub-daily data from observations, reanalysis data, and output from a coarse-resolution (∼200 km) global model and a fine-resolution (4 km) convection-permitting regional model, we show that the negative scaling is primarily a reflection of high temperature suppressing precipitation over land and storm-induced temperature variation over the ocean. We further identify the high temperature-induced increase of saturation deficit as a critical condition for the negative scaling of extreme precipitation over land. Large saturation deficit reduces precipitation intensity by slowing down the convective updraft condensation rate and accelerating condensate evaporation. The heat-induced suppression of precipitation, both for its mean and extremes, provides one mechanism for the co-occurrence of drought and heatwaves. As the saturation deficit over land is expected to increase in a warmer climate, our results imply a growing prevalence of negative scaling, potentially increasing the frequency of compound drought and heat events. Understanding the physical mechanisms underlying the negative scaling of precipitation at high temperature is, therefore, essential for assessing future risks of extreme events, including not only flood due to extreme precipitation but also drought and heatwaves. 
    more » « less
  5. Abstract Increases in population exposure to humid heat extremes in agriculturally-dependent areas of the world highlights the importance of understanding how the location and timing of humid heat extremes intersects with labor-intensive agricultural activities. Agricultural workers are acutely vulnerable to heat-related health and productivity impacts as a result of the outdoor and physical nature of their work and by compounding socio-economic factors. Here, we identify the regions, crops, and seasons when agricultural workers experience the highest hazard from extreme humid heat. Using daily maximum wet-bulb temperature data, and region-specific agricultural calendars and cropland area for 12 crops, we quantify the number of extreme humid heat days during the planting and harvesting seasons for each crop between 1979–2019. We find that rice, an extremely labor-intensive crop, and maize croplands experienced the greatest exposure to dangerous humid heat (integrating cropland area exposed to >27 °C wet-bulb temperatures), with 2001–2019 mean rice and maize cropland exposure increasing 1.8 and 1.9 times the 1979–2000 mean exposure, respectively. Crops in socio-economically vulnerable regions, including Southeast Asia, equatorial South America, the Indo-Gangetic Basin, coastal Mexico, and the northern coast of the Gulf of Guinea, experience the most frequent exposure to these extremes, in certain areas exceeding 60 extreme humid heat days per year when crops are being cultivated. They also experience higher trends relative to other world regions, with certain areas exceeding a 15 day per decade increase in extreme humid heat days. Our crop and location-specific analysis of extreme humid heat hazards during labor-intensive agricultural seasons can inform the design of policies and efforts to reduce the adverse health and productivity impacts on this vulnerable population that is crucial to the global food system. 
    more » « less