Abstract Improvements in analytical procedures in parallel with intercalibration of40Ar/39Ar and U–Pb methods and laboratories, spurred since 2003 by the EarthTime geochronology community initiative, have led to ±2σuncertainties of the order of 50–100 ka, or better, for Cretaceous ash beds. Assembled here are 5740Ar/39Ar ages and 17238U–206Pb ages of volcanic ash beds in strata of the Western Interior Basin of North America determined during the last 15 years since these improvements have been made. These age determinations span from 108 Ma in the middle Albian to 66 Ma in the latest Maastrichtian. Five of the40Ar/39Ar ages from Campanian and Maastrichtian strata are newly reported here, whereas the remainder are from the literature. Building on the pioneering work of John Obradovich and Bill Cobban, where possible these age determinations are tied to ammonite and inoceramid biostratigraphy. For most ash beds, the temporal uncertainties, unlike earlier timescales for the Western Interior Basin, are much shorter than the duration of fossil biozones. Proposed ages for stage boundaries based on this review of the radioisotopic ages include: Maastrichtian–Danian, 66.02 ± 0.08 Ma; Campanian–Maastrichtian, 72.20 ± 0.20 Ma; Santonian–Campanian, 84.19 ± 0.38 Ma; Coniacian–Santonian, 86.49 ± 0.44 Ma; Turonian–Coniacian, 89.75 ± 0.38 Ma; Cenomanian–Turonian, 93.95 ± 0.05 Ma; Albian–Cenomanian, 100.00 ± 0.40 Ma. Six bentonites that occur within theVascoceras diartianum, Neocardiocerus juddi, Prionocylus macombi, Scaphites preventricosus, Scaphites depressusandDesmoscaphites bassleriammonite zones, dated using both40Ar/39Ar and U–Pb methods, yield ages in agreement to within 150 ka and form the backbone of the Western Interior Basin timescale. In parallel, improvements in the taxonomy of ammonites, inoceramids and foraminifera, and recent field work, are better establishing the biostratigraphic framework for these age determinations. Each of these efforts contributes to the progressive refinement of the chronostratigraphic framework of the Western Interior Basin, and enhances its utility for global correlation.
more »
« less
Initial 40 Ar‐ 39 Ar Ages of the Paleocene‐Eocene Boundary Impact Spherules
Abstract We report40Ar‐39Ar step‐heating ages of Paleocene‐Eocene (P‐E) boundary impact spherules from Atlantic Margin coastal plain and open ocean sites. We test the hypothesis that the P‐E spherules are reworked from an earlier event (e.g., K‐Pg impact at ~66 Ma), which predicts a cooling age discordant from their depositional age of 55.93 ± 0.05 Ma at the P‐E boundary. Isochrons from the step‐heating analysis yield40Ar‐36Ar intercepts in excess of the modern in most cases, indicating that the spherules have excess radiogenic Ar (40Ar*), typical of impact glasses incompletely degassed before solidification. The weighted mean of the isochron‐corrected plateau age is 54.2 ± 2.5 Ma (1σ), and their isochron age is 55.4 ± 4.0 Ma, both indistinguishable from their P‐E depositional age, not supporting the K‐Pg reworking hypothesis. This is consistent with all other stratigraphic and geochemical evidence for an impact at the P‐E boundary and ejecta distribution by air fall.
more »
« less
- Award ID(s):
- 1737100
- PAR ID:
- 10449072
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 46
- Issue:
- 15
- ISSN:
- 0094-8276
- Format(s):
- Medium: X Size: p. 9091-9102
- Size(s):
- p. 9091-9102
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Mattoon, C.M.; Vogt, R.; Escher, J.; Thompson, I. (Ed.)The cross-section of the thermal neutron capture41Ar(n,γ)42Ar(t1/2=32.9 y) reaction was measured by irradiating a40Ar sample at the high-flux reactor of Institut Laue-Langevin (ILL) Grenoble, France. The signature of the two-neutron capture has been observed by measuring the growth curve and identifying the 1524.6 keV γ-lines of the shorter-lived42K(12.4 h) β−daughter of42Ar. Our preliminary value of the41Ar(n,γ)42Ar thermal cross section is 240(80) mb at 25.3 meV. For the first time, direct counting of42Ar was performed using the ultra-high sensitivity technique of noble gas accelerator mass spectrometry (NOGAMS) at Argonne National Laboratory, USA.more » « less
-
Abstract Deccan Traps flood basalt volcanism affected ecosystems spanning the end‐Cretaceous mass extinction, with the most significant environmental effects hypothesized to be a consequence of the largest eruptions. The Rajahmundry Traps are the farthest exposures (~1,000 km) of Deccan basalt from the putative eruptive centers in the Western Ghats and hence represent some of the largest volume Deccan eruptions. Although the three subaerial Rajahmundry lava flows have been geochemically correlated to the Wai Subgroup of the Deccan Traps, poor precision associated with previous radioisotopic age constraints has prevented detailed comparison with potential climate effects. In this study, we use new40Ar/39Ar dates, paleomagnetic and volcanological analyses, and biostratigraphic constraints for the Rajahmundry lava flows to ascertain the timing and style of their emplacement. We find that the lower and middle flows (65.92 ± 0.25 and 65.67 ± 0.08 Ma, ±1σsystematic uncertainty) were erupted within magnetochron C29r and were a part of the Ambenali Formation of the Deccan Traps. By contrast, the uppermost flow (65.27 ± 0.08 Ma) was erupted in C29n as part of the Mahabaleshwar Formation. Given these age constraints, the Rajahmundry flows were not involved in the end‐Cretaceous extinction as previously hypothesized. To determine whether the emplacement of the Rajahmundry flows could have affected global climate, we estimated their eruptive CO2release and corresponding climate change using scalings from the LOSCAR carbon cycle model. We find that the eruptive gas emissions of these flows were insufficient to directly cause multi‐degree warming; hence, a causal relationship with significant climate warming requires additional Earth system feedbacks.more » « less
-
Abstract 39Ar with its 269‐year half‐life has great potential for constraining ocean ventilation and transport. Here we estimate the distribution of39Ar using a steady ocean circulation inverse model. Our estimates match available39Ar measurements to within an absolute error of ∼9% modern argon without major biases. We find that39Ar traces out the world ocean's ventilation pathways and that the39Ar age ΓArand the ideal mean age have broadly similar large‐scale patterns. At the surface,39Ar is close to saturated except at high latitudes. Undersaturation imparts a finite39Ar age to surface waters relative to the atmosphere, with peak values exceeding 100 years in Antarctic waters. This reservoir age is propagated into the interior with Antarctic Bottom Water, elevating ΓArby ∼50 years in the deep Pacific and Indian oceans. Our estimates identify the large‐scale gradients and uncertainty patterns of39Ar, thus providing guidance for future measurements.more » « less
-
Abstract The bulk of Uranus consists of a rock–ice core, but the relative proportions of rock and ice are unknown. Radioactive decay of potassium in the silicates produces40Ar. If transport of argon from the core to the gaseous envelope is efficient, a measurement of40Ar in the envelope will provide a direct constraint on the rock mass present (assuming a chondritic rock composition). The expected40Ar concentrations in this case would be readily detectable by a mass spectrometer carried by a future atmospheric probe. For a given envelope concentration there is a trade-off between the rock mass present and the transport efficiency; this degeneracy could be overcome by making independent determinations of the rock mass (e.g., by gravity and seismology). Primordial40Ar is a potential confounding factor, especially if Ar/H2is significantly enhanced above solar or if degassing of radiogenic40Ar were inefficient. Unfortunately, the primordial40Ar/36Ar ratio is very uncertain; better constraints on this ratio through measurement or theory would be very helpful. Pollution of the envelope by silicates is another confounding factor but can be overcome by a measurement of the alkali metals in the envelope.more » « less
An official website of the United States government
