Summary Different methods of measuring cavitation resistance in fern petioles lead to variable results, particularly with respect to the P50metric. We hypothesised that the fern dictyostele structure affects air entry into the xylem, and therefore impacts the shape of the vulnerability curve.Our study examined this variation by comparing vulnerability curves constructed on petioles collected from evergreen and deciduous ferns in the field, with curves generated using the standard centrifuge, air‐injection and bench‐top dehydration methods. Additional experiments complemented the vulnerability curves to better understand how anatomy shapes estimates of cavitation resistance.Centrifugation and radial air injection generated acceptable vulnerability curves for the deciduous species, but overestimated drought resistance in the two evergreen ferns. In these hardy plants, axial air injection and bench‐top dehydration produced results that most closely aligned with observations in nature. Additional experiments revealed that the dictyostele anatomy impedes air entry into the xylem during spinning and radial air injection.Each method produced acceptable vulnerability curves, depending on the species being tested. Therefore, we stress the importance of validating the curves within situmeasures of water potential and, if possible, hydraulic data to generate realistic results with any of the methods currently available. 
                        more » 
                        « less   
                    
                            
                            Analysis of shape data: From landmarks to elastic curves
                        
                    
    
            Abstract Proliferation of high‐resolution imaging data in recent years has led to substantial improvements in the two popular approaches for analyzing shapes of data objects based on landmarks and/or continuous curves. We provide an expository account of elastic shape analysis of parametric planar curves representing shapes of two‐dimensional (2D) objects by discussing its differences, and its commonalities, to the landmark‐based approach. Particular attention is accorded to the role of reparameterization of a curve, which in addition to rotation, scaling and translation, represents an important shape‐preserving transformation of a curve. The transition to the curve‐based approach moves the mathematical setting of shape analysis from finite‐dimensional non‐Euclidean spaces to infinite‐dimensional ones. We discuss some of the challenges associated with the infinite‐dimensionality of the shape space, and illustrate the use of geometry‐based methods in the computation of intrinsic statistical summaries and in the definition of statistical models on a 2D imaging dataset consisting of mouse vertebrae. We conclude with an overview of the current state‐of‐the‐art in the field. This article is categorized under: Image and Spatial Data < Data: Types and StructureComputational Mathematics < Applications of Computational Statistics 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10449115
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- WIREs Computational Statistics
- Volume:
- 12
- Issue:
- 3
- ISSN:
- 1939-5108
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Technological advances in three imaging techniques have opened the door to advanced morphological analyses and habitat mapping for biologists and ecologists.At the same time, the challenge of translating complex 3D data into meaningful metrics that can be used in conjunction with biological data currently hinders progress and accessibility.We introducehabtools, an R package that provides R functions to efficiently calculate complexity and shape metrics from DEMs, 3D meshes and 2D shapes as well as some helper functions to facilitate workflow.We expect the functionality ofhabtoolsto continue to expand as new metrics and faster methods become available, and we welcome new contributions and ideas.more » « less
- 
            Abstract Since the very first detection of gravitational waves from the coalescence of two black holes in 2015, Bayesian statistical methods have been routinely applied by LIGO and Virgo to extract the signal out of noisy interferometric measurements, obtain point estimates of the physical parameters responsible for producing the signal, and rigorously quantify their uncertainties. Different computational techniques have been devised depending on the source of the gravitational radiation and the gravitational waveform model used. Prominent sources of gravitational waves are binary black hole or neutron star mergers, the only objects that have been observed by detectors to date. But also gravitational waves from core‐collapse supernovae, rapidly rotating neutron stars, and the stochastic gravitational‐wave background are in the sensitivity band of the ground‐based interferometers and expected to be observable in future observation runs. As nonlinearities of the complex waveforms and the high‐dimensional parameter spaces preclude analytic evaluation of the posterior distribution, posterior inference for all these sources relies on computer‐intensive simulation techniques such as Markov chain Monte Carlo methods. A review of state‐of‐the‐art Bayesian statistical parameter estimation methods will be given for researchers in this cross‐disciplinary area of gravitational wave data analysis. This article is categorized under:Applications of Computational Statistics > Signal and Image Processing and CodingStatistical and Graphical Methods of Data Analysis > Markov Chain Monte Carlo (MCMC)Statistical Models > Time Series Modelsmore » « less
- 
            Abstract Optimal transport (OT) methods seek a transformation map (or plan) between two probability measures, such that the transformation has the minimum transportation cost. Such a minimum transport cost, with a certain power transform, is called the Wasserstein distance. Recently, OT methods have drawn great attention in statistics, machine learning, and computer science, especially in deep generative neural networks. Despite its broad applications, the estimation of high‐dimensional Wasserstein distances is a well‐known challenging problem owing to the curse‐of‐dimensionality. There are some cutting‐edge projection‐based techniques that tackle high‐dimensional OT problems. Three major approaches of such techniques are introduced, respectively, the slicing approach, the iterative projection approach, and the projection robust OT approach. Open challenges are discussed at the end of the review. This article is categorized under:Statistical and Graphical Methods of Data Analysis > Dimension ReductionStatistical Learning and Exploratory Methods of the Data Sciences > Manifold Learningmore » « less
- 
            Summary Inflorescence architecture in plants is often complex and challenging to quantify, particularly for inflorescences of cereal grasses. Methods for capturing inflorescence architecture and for analyzing the resulting data are limited to a few easily captured parameters that may miss the rich underlying diversity.Here, we apply X‐ray computed tomography combined with detailed morphometrics, offering new imaging and computational tools to analyze three‐dimensional inflorescence architecture. To show the power of this approach, we focus on the panicles ofSorghum bicolor, which vary extensively in numbers, lengths, and angles of primary branches, as well as the three‐dimensional shape, size, and distribution of the seed.We imaged and comprehensively evaluated the panicle morphology of 55 sorghum accessions that represent the five botanical races in the most common classification system of the species, defined by genetic data. We used our data to determine the reliability of the morphological characters for assigning specimens to race and found that seed features were particularly informative.However, the extensive overlap between botanical races in multivariate trait space indicates that the phenotypic range of each group extends well beyond its overall genetic background, indicating unexpectedly weak correlation between morphology, genetic identity, and domestication history.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
