Considering heterogeneity in porous media pore size and connectivity is essential to predicting reactive solute transport across interfaces. However, exchange with less‐mobile porosity is rarely considered in surface water/groundwater recharge studies. Previous research indicates that a combination of pore‐fluid sampling and geoelectrical measurements can be used to quantify less‐mobile porosity exchange dynamics using the time‐varying relation between fluid and bulk electrical conductivity. For this study, we use macro‐scale (10 s of cm) advection–dispersion solute transport models linked with electrical conduction in COMSOL Multiphysics to explore less‐mobile porosity dynamics in two different types of observed sediment water interface porous media. Modeled sediment textures contrast from strongly layered streambed deposits to poorly sorted lakebed sands and cobbles. During simulated ionic tracer perturbations, a lag between fluid and bulk electrical conductivity, and the resultant hysteresis, is observed for all simulations indicating differential loading of pore spaces with tracer. Less‐mobile exchange parameters are determined graphically from these tracer time series data without the need for inverse numerical model simulation. In both sediment types, effective less‐mobile porosity exchange parameters are variable in response to changes in flow direction and fluid flux. These observed flow‐dependent effects directly impact local less‐mobile residence times and associated contact time for biogeochemical reaction. The simulations indicate that for the sediment textures explored here, less‐mobile porosity exchange is dominated by variable rates of advection through the domain, rather than diffusion of solute, for typical low‐to‐moderate rate (approximately 3–40 cm/day) hyporheic fluid fluxes. Overall, our model‐based results show that less‐mobile porosity may be expected in a range of natural hyporheic sediments and that changes in flowpath orientation and magnitude will impact less‐mobile exchange parameters. These temporal dynamics can be assessed with the geoelectrical experimental tracer method applied at laboratory and field scales.
Hyporheic exchange is a crucial control of the type and rates of streambed biogeochemical processes, including metabolism, respiration, nutrient turnover, and the transformation of pollutants. Previous work has shown that increasing discharge during an individual peak flow event strengthens biogeochemical turnover by enhancing the exchange of water and dissolved solutes. However, due to the nonsteady nature of the exchange process, successive peak flow events do not exhibit proportional variations in residence time and turnover, and in some cases, can reduce the hyporheic zones' biogeochemical potential. Here, we used a process‐based model to explore the role of successive peak flow events on the flow and transport characteristics of bedform‐induced hyporheic exchange. We conducted a systematic analysis of the impacts of the events' magnitude, duration, and time between peaks in the hyporheic zone's fluxes, penetration, and residence times. The relative contribution of each event to the transport of solutes across the sediment‐water interface was inferred from transport simulations of a conservative solute. In addition to temporal variations in the hyporheic flow field, our results demonstrate that the separation between two events determines the temporal evolution of residence time and that event time lags longer than the memory of the system result in successive events that can be treated independently. This study highlights the importance of discharge variability in the dynamics of hyporheic exchange and its potential implications for biogeochemical transformations and fate of contaminants along river corridors.
more » « less- Award ID(s):
- 1830172
- NSF-PAR ID:
- 10449124
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Water Resources Research
- Volume:
- 56
- Issue:
- 8
- ISSN:
- 0043-1397
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Coupled groundwater flow and heat transport within hyporheic zones extensively affect water, energy, and solute exchange with surrounding sediments. The local and cumulative implications of this tightly coupled process strongly depend on characteristics of drivers (i.e., discharge and temperature of the water column) and modulators (i.e., hydraulic and thermal properties of the sediment). With this in mind, we perform a systematic numerical analysis of hyporheic responses to understand how the temporal variability of river discharge and temperature affect flow and heat transport within hyporheic zones. We identify typical time series of river discharge and temperature from gauging stations along the headwater region of Mississippi River Basin, which are characterized by different degrees of flow alteration, to drive a physics‐based model of the hyporheic exchange process. Our modeling results indicate that coupled groundwater flow and heat transport significantly affects the dynamic response of hyporheic zones, resulting in substantial differences in exchange rates and characteristic time scales of hyporheic exchange processes. We also find that the hyporheic zone dampens river temperature fluctuations increasingly with higher frequency of temperature fluctuations. This dampening effect depends on the system transport time scale and characteristics of river discharge and temperature variability. Furthermore, our results reveal that the flow alteration reduces the potential of hyporheic zones to act as a temperature buffer and hinders denitrification within hyporheic zones. These results have significant implications for understanding the drivers of local variability in hyporheic exchange and the implications for the development of thermal refugia and ecosystem functioning in hyporheic zones.
-
Abstract Log jams alter gradients in hydraulic head, increase the area available for hyporheic exchange by creating backwater areas, and lead to the formation of multiple channel branches and bars that drive additional exchange. Here, we numerically simulated stream‐groundwater interactions for two constructed flume systems—one without jams and one with a series of three jams—to quantify the effects of interacting jam structures and channel branches on hyporheic exchange at three stream flow rates. In simulations without jams, average hyporheic exchange rates ranged from 2.1 × 10−4to 2.9 × 10−4 m/s for various stream discharge scenarios, but with jams, exchange rates increased to a range of 1.3 × 10−3–3.5 × 10−3 m/s. Largely due to these increased hyporheic exchange rates, jams increased stream‐groundwater connectivity or decreased the turnover length that stream water travels before interacting with the hyporheic zone, by an order of magnitude, and drove long flow paths that connected multiple jams and channel threads. Decreased turnover lengths corresponded with greater reaction significance per km, a measure of the potential for the hyporheic zone to influence stream water chemistry. For low‐flow conditions, log jams increased reaction significance per km five‐fold, from 0.07 to 0.35. Jams with larger volumes led to longer hyporheic residence times and path lengths that exhibited multiple scales of exchange. Additionally, the longest flow paths connecting multiple jams occurred in the reach with multiple channel branches. These findings suggest that large gains in hydrologic connectivity can be achieved by promoting in‐stream wood accumulation and the natural formation of both jams and branching channels.
-
Abstract Hydropsychid (net‐spinning caddisfly) larvae are aquatic macroinvertebrate ecosystem engineers, altering streambed properties by creating silk nets and retreats. Recent research has shown that caddisfly silk binds stream sediments and alters streambed cohesion, yet potential influences of caddisfly activity on streambed hydrologic properties have not received similar scrutiny. Utilizing a novel downward flow permeameter, we demonstrate how net‐spinning caddisfly colonization of the streambed interstitia at moderate but common densities (2000 m−2) can reduce vertical hydraulic conductivity (KV) by up to 55% in streambed sediments (coarse sand—medium gravel; median diameter = 12.91 mm). Additionally, organic matter content within sediment columns showed that occupation by caddisflies resulted in twice the ash‐free dry mass (AFDM) of noncaddisfly (primarily microbial) organic matter at the end of our experiments relative to control systems that lack caddisflies. These results suggest that net‐spinning caddisflies may restrict hyporheic exchange, alter streambed hydrologic residence time distributions and increase per‐unit‐volume biotic metabolic demand for stream solutes in the hyporheic zone, with the potential to alter whole‐stream biogeochemical processes.
-
Abstract Biogeochemical reactions within intertidal zones of coastal aquifers have been shown to alter the concentrations of terrestrial solutes prior to their discharge to surface waters. In organic‐poor sandy aquifers, the input of marine organic matter from infiltrating seawater supports active biogeochemical reactions within the sediments. However, while the seasonality of surface water organic carbon concentrations (primary production) and groundwater mixing have been documented, there is limited understanding of the transience of various organic carbon pools (pore water particulate, dissolved, sedimentary) within the aquifer and how these relate to the location and magnitudes of biogeochemical reactions over time. To understand the relationship between changes in groundwater flow and the seasonal migration of geochemical patterns, beach pore water and sediment samples were collected and analyzed from six field sampling events spanning 2 years. While the seasonally dynamic patterns of aerobic respiration closely followed those of salinity, redox conditions and nutrient characteristics (distributions of N and P, denitrification rates) were unrelated to contemporaneous salinity patterns. This divergence was attributed to the spatial variations of reactive particulate organic carbon distributions, unrelated to salinity patterns, likely due to filtration, retardation, and immobilization dynamics during transport within the sediments. Results support a “carbon memory” effect within the beach, with the evolution and migration of reaction patterns relating to the distribution of these scattered carbon pools as more mobile solutes move over less mobile pools during changes in hydrologic conditions. This holds important implications for the prediction and quantification of biogeochemical reactions within beach systems.