The hyporheic zone is the ecotone between stream and river channel flow and groundwater that can process nutrients and improve water quality. Transient hyporheic zones occur in the riparian zone (bank storage or “lung model” exchange) during channel stage fluctuations. Recent studies show that soil pipes are widespread in stream banks and beneath floodplains, creating highly preferential flow between channel and riparian groundwater such that the traditional Darcy model of flow does not apply. We used MODFLOW with the conduit flow package to model a series of stream bank soil pipes and examined soil pipe density (number per m), length, diameter, height above baseflow water surface, connectivity, and matrix hydraulic conductivity on transient particle flow paths and total hyporheic exchange volume (i.e., bank storage) over the course of a peak flow (e.g., storm) event. We found that adding five soil pipes per meter more than doubled hyporheic volume. Soil pipe length was the most important control; adding one 1.5‐m‐long soil pipe caused a 73.4% increase in hyporheic volume. The effect of increasing soil pipe diameter on hyporheic volume leveled off at ~1 cm, as flow limitation switched from pipe flow to pipe‐matrix exchange. To validate our approach, we used the model to successfully reproduce trends from field studies. Our results highlight the need to consider soil pipes when modeling, monitoring, or managing bank storage, floodplain connectivity, or hyporheic exchange.
Log jams alter gradients in hydraulic head, increase the area available for hyporheic exchange by creating backwater areas, and lead to the formation of multiple channel branches and bars that drive additional exchange. Here, we numerically simulated stream‐groundwater interactions for two constructed flume systems—one without jams and one with a series of three jams—to quantify the effects of interacting jam structures and channel branches on hyporheic exchange at three stream flow rates. In simulations without jams, average hyporheic exchange rates ranged from 2.1 × 10−4to 2.9 × 10−4 m/s for various stream discharge scenarios, but with jams, exchange rates increased to a range of 1.3 × 10−3–3.5 × 10−3 m/s. Largely due to these increased hyporheic exchange rates, jams increased stream‐groundwater connectivity or decreased the turnover length that stream water travels before interacting with the hyporheic zone, by an order of magnitude, and drove long flow paths that connected multiple jams and channel threads. Decreased turnover lengths corresponded with greater reaction significance per km, a measure of the potential for the hyporheic zone to influence stream water chemistry. For low‐flow conditions, log jams increased reaction significance per km five‐fold, from 0.07 to 0.35. Jams with larger volumes led to longer hyporheic residence times and path lengths that exhibited multiple scales of exchange. Additionally, the longest flow paths connecting multiple jams occurred in the reach with multiple channel branches. These findings suggest that large gains in hydrologic connectivity can be achieved by promoting in‐stream wood accumulation and the natural formation of both jams and branching channels.
more » « less- NSF-PAR ID:
- 10367738
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Water Resources Research
- Volume:
- 57
- Issue:
- 9
- ISSN:
- 0043-1397
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Logjams in a stream create backwater conditions and locally force water to flow through the streambed, creating zones of transient storage within the surface and subsurface of a stream. We investigate the relative importance of logjam distribution density, logjam permeability, and discharge on transient storage in a simplified experimental channel. We use physical flume experiments in which we inject a salt tracer, monitor fluid conductivity breakthrough curves in surface water, and determine breakthrough‐curve skewness to characterize transient storage. We then develop a companion numerical model in HydroGeoSphere to reveal flow paths through the subsurface (or hyporheic zone) that contribute to some of the longest transient‐storage timescales. In both the flume experiments and numerical simulations, we observe backwater formation and an increase in hyporheic exchange at logjams. Observed complexities in transient storage behavior depend largely on surface water flow in the backwater zone. As expected, multiple successive logjams provide more pervasive hyporheic exchange by distributing the head drop at each jam, leading to distributed but shallow flow paths. Decreasing the permeability of a logjam or increasing the discharge both facilitate greater surface water storage and volumetric rate of hyporheic exchange. Understanding how logjam characteristics affect solute transport through both the channel and hyporheic zone has important management implications for rivers in forested, or historically forested, environments.
-
Abstract Peak flow events in gaining stream/river channels cause lung model hyporheic exchange with the banks (bank storage), which fosters beneficial reactions as polluted channel water cycles through riparian groundwater. Soil pipes are common along stream/riverbanks, and enhance exchange, yet their effect on reactions such as denitrification is unknown. We used MODFLOW with the Conduit Flow Package to simulate lung model exchange during a peak flow event in a section of stream bank/riparian soil with soil pipes, and MT3D‐USGS to estimate nitrate transport and denitrification. We varied soil matrix hydraulic conductivity (
K ) and first‐order reaction constant (k ), as well as soil pipe density, length, and height above the initial channel water surface elevation (H ). The addition of soil pipes enhanced stream bank (riparian) denitrification relative to banks without pipes, e.g., a 76% increase due to adding a single 1.5 m pipe. Denitrification increased linearly with pipe density but exhibited nonlinear trends with other parameters. Sensitivity analysis revealed length and density to be most influential. Soil pipe enhancement of denitrification was governed by hyporheic volume in most cases in our study. Exceptions included (a) coarse soil (K = 10−3 m/s) and (b) lowk andH > 0. Scaling our results to the stream corridor scale estimated that five soil pipes per m cumulatively induced 3% nitrate removal along a 1 km reach. Overall, soil pipes enhanced advection of nitrate into the banks, and also increased residence times of that nitrate under certain conditions, which together enhanced denitrification. This enhancement has implications for excess nitrate management in watersheds. -
How does the physical and chemical structure of the Critical Zone (CZ), defined as the zone from treetops to the bottom of groundwater, govern its hydro-biogeochemical functioning? Multiple lines of evidence from past and newly emerging research have prompted the shallow and deep partitioning concentration-discharge (C-Q) hypothesis. The hypothesis states that in-stream C-Q relationships are shaped by distinct source waters from flow paths at different depths. Base flows are often dominated by deep groundwater and mostly reflect groundwater chemistry, whereas high flows are often dominated by shallow soil water and thus mostly reflect soil water chemistry. The contrasts between shallow soil water versus deeper groundwater chemistry shape stream solute export patterns. In this context, the vertical connectivity that regulates the shallow and deep flow partitioning is essential in determining chemical contrasts, biogeochemical reaction rates in soils and parent rocks, and ultimately solute export patterns. This talk will highlight insights gleaned from multiple lines of recent studies that include collation of water chemistry data from soils, rocks, and streams in intensively monitored watersheds, meta-analysis of stream chemistry data at the continental scale, and integrated reactive transport modeling at the hillslope and watershed scales. The hypothesis underscores the importance of subsurface vertical structure and connectivity relative to the extensively studied horizontal connectivity. It also alludes to the potential of using streams as mirrors for subsurface water chemistry, and the potential of using C-Q relationships to infer flow paths and biogeochemical reaction rates and the response of earth’s subsurface to climate and human perturbations. Broadly, this simple conceptual framework links CZ subsurface structure to its functioning under diverse climate, geology, and land cover conditions.more » « less
-
Abstract The Tracer Additions for Spiraling Curve Characterization (TASCC) model has been rapidly adopted to interpret in‐stream nutrient spiraling metrics over a range of concentrations from breakthrough curves (BTCs) obtained during pulse solute injection experiments. TASCC analyses often identify hysteresis in the relationship between spiraling metrics and concentration as nutrient concentration in BTCs rises and falls. The mechanisms behind these hysteresis patterns have yet to be determined. We hypothesized that differences in the time a solute is exposed to bioactive environments (i.e., biophysical opportunity) between the rising and falling limbs of BTCs causes hysteresis in TASCCs. We tested this hypothesis using nitrate data from Elkhorn Creek (CO, USA) combined with a process‐based particle‐tracking model representing travel times and transformations along each flow path in the water column and hyporheic zone, from which the bioactive zone comprised only a thin superficial layer. In‐stream nitrate uptake was controlled by hyporheic exchange and the cumulative time nitrate spend in the bioactive layer. This bioactive residence time generally increased from the rising to the falling limb of the BTC, systematically generating hysteresis in the TASCC curves. Hysteresis decreased when nutrient uptake primarily occurred in the water column compared to the hyporheic zone, and with increasing the distance between the injection and sampling points. Hysteresis increased with the depth of the hyporheic bioactive layer. Our results emphasize that good characterization of spatial heterogeneity of surface‐subsurface flow paths and bioactive hot spots within streams is essential to understanding the mechanisms of in‐stream nutrient uptake.