skip to main content


Title: Scavenging in the Anthropocene: Human impact drives vertebrate scavenger species richness at a global scale
Abstract

Understanding the distribution of biodiversity across the Earth is one of the most challenging questions in biology. Much research has been directed at explaining the species latitudinal pattern showing that communities are richer in tropical areas; however, despite decades of research, a general consensus has not yet emerged. In addition, global biodiversity patterns are being rapidly altered by human activities. Here, we aim to describe large‐scale patterns of species richness and diversity in terrestrial vertebrate scavenger (carrion‐consuming) assemblages, which provide key ecosystem functions and services. We used a worldwide dataset comprising 43 sites, where vertebrate scavenger assemblages were identified using 2,485 carcasses monitored between 1991 and 2018. First, we evaluated how scavenger richness (number of species) and diversity (Shannon diversity index) varied among seasons (cold vs. warm, wet vs. dry). Then, we studied the potential effects of human impact and a set of macroecological variables related to climatic conditions on the scavenger assemblages. Vertebrate scavenger richness ranged from species‐poor to species rich assemblages (4–30 species). Both scavenger richness and diversity also showed some seasonal variation. However, in general, climatic variables did not drive latitudinal patterns, as scavenger richness and diversity were not affected by temperature or rainfall. Rainfall seasonality slightly increased the number of species in the community, but its effect was weak. Instead, the human impact index included in our study was the main predictor of scavenger richness. Scavenger assemblages in highly human‐impacted areas sustained the smallest number of scavenger species, suggesting human activity may be overriding other macroecological processes in shaping scavenger communities. Our results highlight the effect of human impact at a global scale. As species‐rich assemblages tend to be more functional, we warn about possible reductions in ecosystem functions and the services provided by scavengers in human‐dominated landscapes in the Anthropocene.

 
more » « less
NSF-PAR ID:
10449131
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;   « less
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
25
Issue:
9
ISSN:
1354-1013
Page Range / eLocation ID:
p. 3005-3017
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding global patterns of genetic diversity (GD) is essential to describe, monitor, and preserve the processes giving rise to life on Earth. To date, efforts to map macrogenetic patterns have been restricted to vertebrate groups that comprise a small fraction of Earth’s biodiversity. Here, we construct the first global map of predicted insect genetic diversity. We calculate the global distribution of GD mean (GDM) and evenness (GDE) of insect assemblages, identify the global environmental correlates of insect GD, and make predictions for undersampled regions. Based on the largest and most species-rich single-locus genetic dataset assembled to date, we find that both GD metrics follow a bimodal latitudinal gradient, where GDM and GDE correlate with contemporary climate variation. Our models explain 1/4 and 1/3 of the observed variation in GDM and GDE in insects, respectively, making an important step towards describing global biodiversity patterns in the most diverse animal taxon. 
    more » « less
  2. In addition to changes associated with climate and land use, parrots are threatened by hunting and capture for the pet trade, making them one of the most at risk orders of birds for which conservation action is especially important. Species richness is often used to identify high priority areas for conserving biodiversity. By definition, richness considers all species to be equally different from one another. However, ongoing research emphasizes the importance of incorporating ecological functions (functional diversity) or evolutionary relationships (phylogenetic diversity) to more fully understand patterns of biodiversity, because (1) areas of high species richness do not always represent areas of high functional or phylogenetic diversity, and (2) functional or phylogenetic diversity may better predict ecosystem function and evolutionary potential, which are essential for effective long–term conservation policy and management. We created a framework for identifying areas of high species richness, functional diversity, and phylogenetic diversity within the global distribution of parrots. We combined species richness, functional diversity, and phylogenetic diversity into an Integrated Biodiversity Index (IBI) to identify global biodiversity hotspots for parrots. We found important spatial mismatches between dimensions, demonstrating species richness is not always an effective proxy for other dimensions of parrot biodiversity. The IBI is an integrative and flexible index that can incorporate multiple dimensions of biodiversity, resulting in an intuitive and direct way of assessing comprehensive goals in conservation planning.

     
    more » « less
  3. In this inter-continental study of stream diatoms, we asked three important but still unresolved ecological questions: 1) What factors drive the biogeography of species richness and species abundance distribution (SAD); 2) Are climate-related hypotheses, which have dominated the research on the latitudinal and altitudinal diversity gradients, adequate in explaining spatial biotic variability; and 3) Is the SAD response to the environment independent of richness? We tested a number of climatic theories and hypotheses (i.e., the species-energy theory, the metabolic theory, the energy variability hypothesis, and the climatic tolerance hypothesis) but found no support for any of these concepts as the relationships of richness with explanatory variables were non-existent, weak or unexpected. Instead, we demonstrated that diatom richness and SAD evenness generally increased with temperature seasonality and at mid- to high total phosphorus concentrations. The spatial patterns of diatom richness and the SAD—mainly longitudinal in the US, but latitudinal in Finland—were defined primarily by the covariance of climate and water chemistry with space. The SAD was not entirely controlled by richness, emphasizing its utility for ecological research. Thus, we found support for the operation of both climate and water chemistry mechanisms in structuring diatom communities, which underscores their complex response to the environment and the necessity for novel predictive frameworks. 
    more » « less
  4. Abstract

    Global biodiversity is declining at rates faster than at any other point in human history. Experimental manipulations at small spatial scales have demonstrated that communities with fewer species consistently produce less biomass than higher diversity communities. Understanding the consequences of the global extinction crisis for ecosystem functioning requires understanding how local experimental results are likely to change with increasing spatial and temporal scales and from experiments to naturally assembled systems.

    Scaling across time and space in a changing world requires baseline predictions. Here, we provide a graphical null model for area scaling of biodiversity–ecosystem functioning relationships using observed macroecological patterns: the species–area curve and the biomass–area curve. We use species–area and biomass–area curves to predict how species richness–biomass relationships are likely to change with increasing sampling extent. We then validate these predictions with data from two naturally assembled ecosystems: a Minnesota savanna and a Panamanian tropical dry forest.

    Our graphical null model predicts that biodiversity–ecosystem functioning relationships are scale‐dependent. However, we note two important caveats. First, our results indicate an apparent contradiction between predictions based on measurements in biodiversity–ecosystem functioning experiments and from scaling theory. When ecosystem functioning is measured as per unit area (e.g. biomass per m2), as is common in biodiversity–ecosystem functioning experiments, the slope of the biodiversity ecosystem functioning relationship should decrease with increasing scale. Alternatively, when ecosystem functioning is not measured per unit area (e.g. summed total biomass), as is common in scaling studies, the slope of the biodiversity–ecosystem functioning relationship should increase with increasing spatial scale. Second, the underlying macroecological patterns of biodiversity experiments are predictably different from some naturally assembled systems. These differences between the underlying patterns of experiments and naturally assembled systems may enable us to better understand when patterns from biodiversity–ecosystem functioning experiments will be valid in naturally assembled systems.

    Synthesis. This paper provides a simple graphical null model that can be extended to any relationship between biodiversity and any ecosystem functioning across space or time. Furthermore, these predictions provide crucial insights into how and when we may be able to extend results from small‐scale biodiversity experiments to naturally assembled regional and global ecosystems where biodiversity is changing.

     
    more » « less
  5. Understanding environmental biodiversity drivers in freshwater systems continues to be a fundamental challenge in studies of their fish assemblages. The present study seeks to determine the degree to which landscape variables of Amazonian floodplain lakes influences fish assemblages in these environments. Fish species richness was estimated in 15 Amazonian floodplain lakes during the high and low-water phases and correlated with the areas of four inundated wetland classes: (i) open water, (ii) flooded herbaceous, (iii) flooded shrubs and (iv) flooded forest estimated in different radius circular areas around each sampling site. Data were analyzed using generalized linear models with fish species richness, total and guilds as the dependent variable and estimates of buffered landscape areas as explanatory variables. Our analysis identified the significance of landscape variables in determining the diversity of fish assemblages in Amazonian floodplain lakes. Spatial scale was also identified as a significant determinant of fish diversity as landscape effects were more evident at larger spatial scales. In particular, (1) total species richness was more sensitive to variations in the landscape areas than number of species within guilds and (2) the spatial extent of the wetland class of shrubs was consistently the more influential on fish species diversity. 
    more » « less