skip to main content


Title: A deep learning framework to emulate density functional theory
Abstract

Density functional theory (DFT) has been a critical component of computational materials research and discovery for decades. However, the computational cost of solving the central Kohn–Sham equation remains a major obstacle for dynamical studies of complex phenomena at-scale. Here, we propose an end-to-end machine learning (ML) model that emulates the essence of DFT by mapping the atomic structure of the system to its electronic charge density, followed by the prediction of other properties such as density of states, potential energy, atomic forces, and stress tensor, by using the atomic structure and charge density as input. Our deep learning model successfully bypasses the explicit solution of the Kohn-Sham equation with orders of magnitude speedup (linear scaling with system size with a small prefactor), while maintaining chemical accuracy. We demonstrate the capability of this ML-DFT concept for an extensive database of organic molecules, polymer chains, and polymer crystals.

 
more » « less
Award ID(s):
1941029
PAR ID:
10449138
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Computational Materials
Volume:
9
Issue:
1
ISSN:
2057-3960
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The construction of a better exchange-correlation potential in time-dependent density functional theory (TDDFT) can improve the accuracy of TDDFT calculations and provide more accurate predictions of the properties of many-electron systems. Here, we propose a machine learning method to develop the energy functional and the Kohn–Sham potential of a time-dependent Kohn–Sham (TDKS) system is proposed. The method is based on the dynamics of the Kohn–Sham system and does not require any data on the exact Kohn–Sham potential for training the model. We demonstrate the results of our method with a 1D harmonic oscillator example and a 1D two-electron example. We show that the machine-learned Kohn–Sham potential matches the exact Kohn–Sham potential in the absence of memory effect. Our method can still capture the dynamics of the Kohn–Sham system in the presence of memory effects. The machine learning method developed in this article provides insight into making better approximations of the energy functional and the Kohn–Sham potential in the TDKS system.

     
    more » « less
  2. In some sense, quantum mechanics solves all the problems in chemistry: The only thing one has to do is solve the Schrödinger equation for the molecules of interest. Unfortunately, the computational cost of solving this equation grows exponentially with the number of electrons and for more than ~100 electrons, it is impossible to solve it with chemical accuracy (~ 2 kcal/mol). The Kohn-Sham (KS) equations of density functional theory (DFT) allow us to reformulate the Schrödinger equation using the electronic probability density as the central variable without having to calculate the Schrödinger wave functions. The cost of solving the Kohn-Sham equations grows only as N3, where N is the number of electrons, which has led to the immense popularity of DFT in chemistry. Despite this popularity, even the most sophisticated approximations in KS-DFT result in errors that limit the use of methods based exclusively on the electronic density. By using fragment densities (as opposed to total densities) as the main variables, we discuss here how new methods can be developed that scale linearly with N while providing an appealing answer to the subtitle of the article: What is the shape of atoms in molecules 
    more » « less
  3. Abstract

    Density functional theory (DFT) is the standard formalism to study the electronic structure of matter at the atomic scale. In Kohn–Sham DFT simulations, the balance between accuracy and computational cost depends on the choice of exchange and correlation functional, which only exists in approximate form. Here, we propose a framework to create density functionals using supervised machine learning, termed NeuralXC. These machine-learned functionals are designed to lift the accuracy of baseline functionals towards that provided by more accurate methods while maintaining their efficiency. We show that the functionals learn a meaningful representation of the physical information contained in the training data, making them transferable across systems. A NeuralXC functional optimized for water outperforms other methods characterizing bond breaking and excels when comparing against experimental results. This work demonstrates that NeuralXC is a first step towards the design of a universal, highly accurate functional valid for both molecules and solids.

     
    more » « less
  4. Abstract

    The theorems of density functional theory (DFT) establish bijective maps between the local external potential of a many-body system and its electron density, wavefunction and, therefore, one-particle reduced density matrix. Building on this foundation, we show that machine learning models based on the one-electron reduced density matrix can be used to generate surrogate electronic structure methods. We generate surrogates of local and hybrid DFT, Hartree-Fock and full configuration interaction theories for systems ranging from small molecules such as water to more complex compounds like benzene and propanol. The surrogate models use the one-electron reduced density matrix as the central quantity to be learned. From the predicted density matrices, we show that either standard quantum chemistry or a second machine-learning model can be used to compute molecular observables, energies, and atomic forces. The surrogate models can generate essentially anything that a standard electronic structure method can, ranging from band gaps and Kohn-Sham orbitals to energy-conserving ab-initio molecular dynamics simulations and infrared spectra, which account for anharmonicity and thermal effects, without the need to employ computationally expensive algorithms such as self-consistent field theory. The algorithms are packaged in an efficient and easy to use Python code, QMLearn, accessible on popular platforms.

     
    more » « less
  5. Abstract

    In silico materials design is hampered by the computational complexity of Kohn–Sham DFT, which scales cubically with the system size. Owing to the development of new‐generation kinetic energy density functionals (KEDFs), orbital‐free DFT (OFDFT) can now be successfully applied to a large class of semiconductors and such finite systems as quantum dots and metal clusters. In this work, we present DFTpy, an open‐source software implementing OFDFT written entirely in Python 3 and outsourcing the computationally expensive operations to third‐party modules, such as NumPy and SciPy. When fast simulations are in order, DFTpy exploits the fast Fourier transforms from PyFFTW. New‐generation, nonlocal and density‐dependent‐kernel KEDFs are made computationally efficient by employing linear splines and other methods for fast kernel builds. We showcase DFTpy by solving for the electronic structure of a million‐atom system of aluminum metal which was computed on a single CPU. The Python 3 implementation is object‐oriented, opening the door to easy implementation of new features. As an example, we present a time‐dependent OFDFT implementation (hydrodynamic DFT) which we use to compute the spectra of small metal clusters recovering qualitatively the time‐dependent Kohn–Sham DFT result. The Python codebase allows for easy implementation of application programming interfaces. We showcase the combination of DFTpy and ASE for molecular dynamics simulations of liquid metals. DFTpy is released under the MIT license.

    This article is categorized under:

    Software > Quantum Chemistry

    Electronic Structure Theory > Density Functional Theory

    Data Science > Computer Algorithms and Programming

     
    more » « less