skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: DFTpy : An efficient and object‐oriented platform for orbital‐free DFT simulations
Abstract In silico materials design is hampered by the computational complexity of Kohn–Sham DFT, which scales cubically with the system size. Owing to the development of new‐generation kinetic energy density functionals (KEDFs), orbital‐free DFT (OFDFT) can now be successfully applied to a large class of semiconductors and such finite systems as quantum dots and metal clusters. In this work, we present DFTpy, an open‐source software implementing OFDFT written entirely in Python 3 and outsourcing the computationally expensive operations to third‐party modules, such as NumPy and SciPy. When fast simulations are in order, DFTpy exploits the fast Fourier transforms from PyFFTW. New‐generation, nonlocal and density‐dependent‐kernel KEDFs are made computationally efficient by employing linear splines and other methods for fast kernel builds. We showcase DFTpy by solving for the electronic structure of a million‐atom system of aluminum metal which was computed on a single CPU. The Python 3 implementation is object‐oriented, opening the door to easy implementation of new features. As an example, we present a time‐dependent OFDFT implementation (hydrodynamic DFT) which we use to compute the spectra of small metal clusters recovering qualitatively the time‐dependent Kohn–Sham DFT result. The Python codebase allows for easy implementation of application programming interfaces. We showcase the combination of DFTpy and ASE for molecular dynamics simulations of liquid metals. DFTpy is released under the MIT license. This article is categorized under:Software > Quantum ChemistryElectronic Structure Theory > Density Functional TheoryData Science > Computer Algorithms and Programming  more » « less
Award ID(s):
1553993 1931473
PAR ID:
10360571
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
WIREs Computational Molecular Science
Volume:
11
Issue:
1
ISSN:
1759-0876
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The theorems of density functional theory (DFT) establish bijective maps between the local external potential of a many-body system and its electron density, wavefunction and, therefore, one-particle reduced density matrix. Building on this foundation, we show that machine learning models based on the one-electron reduced density matrix can be used to generate surrogate electronic structure methods. We generate surrogates of local and hybrid DFT, Hartree-Fock and full configuration interaction theories for systems ranging from small molecules such as water to more complex compounds like benzene and propanol. The surrogate models use the one-electron reduced density matrix as the central quantity to be learned. From the predicted density matrices, we show that either standard quantum chemistry or a second machine-learning model can be used to compute molecular observables, energies, and atomic forces. The surrogate models can generate essentially anything that a standard electronic structure method can, ranging from band gaps and Kohn-Sham orbitals to energy-conserving ab-initio molecular dynamics simulations and infrared spectra, which account for anharmonicity and thermal effects, without the need to employ computationally expensive algorithms such as self-consistent field theory. The algorithms are packaged in an efficient and easy to use Python code, QMLearn, accessible on popular platforms. 
    more » « less
  2. Abstract We present PyCDFT, a Python package to compute diabatic states using constrained density functional theory (CDFT). PyCDFT provides an object‐oriented, customizable implementation of CDFT, and allows for both single‐point self‐consistent‐field calculations and geometry optimizations. PyCDFT is designed to interface with existing density functional theory (DFT) codes to perform CDFT calculations where constraint potentials are added to the Kohn–Sham Hamiltonian. Here, we demonstrate the use of PyCDFT by performing calculations with a massively parallel first‐principles molecular dynamics code, Qbox, and we benchmark its accuracy by computing the electronic coupling between diabatic states for a set of organic molecules. We show that PyCDFT yields results in agreement with existing implementations and is a robust and flexible package for performing CDFT calculations. The program is available athttps://dx.doi.org/10.5281/zenodo.3821097. 
    more » « less
  3. Abstract The two‐electron reduced density matrix (2RDM) carries enough information to evaluate the electronic energy of a many‐electron system. The variational 2RDM (v2RDM) approach seeks to determine the 2RDM directly, without knowledge of the wave function, by minimizing this energy with respect to variations in the elements of the 2RDM, while also enforcing knownN‐representability conditions. In this tutorial review, we provide an overview of the theoretical underpinnings of the v2RDM approach and theN‐representability constraints that are typically applied to the 2RDM. We also discuss the semidefinite programming (SDP) techniques used in v2RDM computations and provide enough Python code to develop a working v2RDM code that interfaces to thelibSDPlibrary of SDP solvers. This article is categorized under:Electronic Structure Theory > Ab Initio Electronic Structure MethodsSoftware > Quantum Chemistry 
    more » « less
  4. Abstract As the tools of computational quantum chemistry have continued to mature, larger and more complex molecular systems have become amenable to computational study. However, studies of these complex systems often require the execution of enormous numbers of computations, which can be a tedious and error‐prone process if done manually. We have developed a suite of free, open‐source tools to facilitate the automation of quantum chemistry workflows. These tools are collected under the organization QChASM (Quantum Chemistry Automation and Structure Manipulation) and include functionality for building and manipulating complex molecular structures and performing routine tasks (AaronTools), a toolkit for automating TS optimizations and predictions of the outcomes of selective homogeneous catalytic reactions, and a plug‐in for UCSF ChimeraX that provides a graphical interface for building complex molecular structures and representing output from quantum chemistry computations. These tools are described below, with a focus on the recent Python implementation of AaronTools. This article is categorized under:Structure and Mechanism > Reaction Mechanisms and CatalysisSoftware > Quantum Chemistry 
    more » « less
  5. Kohn–Sham density functional theory (DFT) is the most widely used electronic structure theory. Despite significant progress in the past few decades, the numerical solution of Kohn–Sham DFT problems remains challenging, especially for large-scale systems. In this paper we review the basics as well as state-of-the-art numerical methods, and focus on the unique numerical challenges of DFT. 
    more » « less